11章_化学动力学基础(二).

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

上一内容下一内容回主目录返回2020/1/15物理化学电子教案—第十一章上一内容下一内容回主目录返回2020/1/1511.1碰撞理论第十一章化学动力学基础(二)11.2过渡态理论11.3单分子反应理论11.4分子反应动态学简介11.5在溶液中进行的反应11.6快速反应的测试11.7光化学反应11.8催化反应动力学上一内容下一内容回主目录返回2020/1/1511.1碰撞理论速率理论的共同点两个分子的一次碰撞过程有效碰撞直径和碰撞截面A与B分子互碰频率两个A分子的互碰频率硬球碰撞模型碰撞参数有效碰撞分数反应截面反应阈能碰撞理论计算速率系数的公式反应阈能与实验活化能的关系概率因子碰撞理论的优缺点上一内容下一内容回主目录返回2020/1/15速率理论的共同点与热力学的经典理论相比,动力学理论发展较迟。先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的,尚有明显不足之处。理论的共同点是:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。上一内容下一内容回主目录返回2020/1/15两个分子的一次碰撞过程两个分子在相互的作用力下,先是互相接近,接近到一定距离,分子间的斥力随着距离的减小而很快增大,分子就改变原来的方向而相互远离,完成了一次碰撞过程。粒子在质心体系中的碰撞轨线可用示意图表示为:上一内容下一内容回主目录返回2020/1/15两个分子的一次碰撞过程上一内容下一内容回主目录返回2020/1/15有效碰撞直径和碰撞截面运动着的A分子和B分子,两者质心的投影落在直径为的圆截面之内,都有可能发生碰撞。ABd称为有效碰撞直径,数值上等于A分子和B分子的半径之和。ABdABABd分子间的碰撞和有效直径虚线圆的面积称为碰撞截面(collisioncrosssection)。数值上等于。2ABd上一内容下一内容回主目录返回2020/1/15A与B分子互碰频率将A和B分子看作硬球,根据气体分子运动论,它们以一定角度相碰。2/1BB2/1AA2/12B2Ar)8()8(][MRTuMRTuuuu相对速度为:互碰频率为:21/2ABABAB8()NNRTZdVV221/2ABAB8()[AB]][RTZdL或ABABMMMM式中AB[A][B]NNLLVV上一内容下一内容回主目录返回2020/1/15两个A分子的互碰频率当体系中只有一种A分子,两个A分子互碰的相对速度为:2/1Ar)82(MRTu每次碰撞需要两个A分子,为防止重复计算,在碰撞频率中除以2,所以两个A分子互碰频率为:221/2AAAAAA28()()2NRTZdVM221/22AAA2()[A]RTdLM221/2AAAA2()()NRTdVM上一内容下一内容回主目录返回2020/1/15硬球碰撞模型将总的动能表示为质心整体运动的动能和分子相对运动的动能,gr22grABgr11()22Emmuu两个分子在空间整体运动的动能对化学反应没有贡献,而相对动能可以衡量两个分子相互趋近时能量的大小,有可能发生化学反应。gu设A和B为没有结构的硬球分子,质量分别为和,折合质量为,运动速度分别为和,总的动能为AuBu2BB2AA2121umumEAmBm上一内容下一内容回主目录返回2020/1/150bb值越小,碰撞越激烈。迎头碰撞,最激烈.碰撞参数(impactparameter)碰撞参数用来描述粒子碰撞激烈的程度,通常用字母b表示。通过A球质心,画平行于的平行线,两平行线间的距离就是碰撞参数b。数值上:ru在硬球碰撞示意图上,A和B两个球的连心线等于两个球的半径之和,它与相对速度之间的夹角为。ABdruABsinbdmaxABbd上一内容下一内容回主目录返回2020/1/15碰撞参数(impactparameter)上一内容下一内容回主目录返回2020/1/15有效碰撞分数)exp(cRTEq分子互碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能的碰撞才是有效的,所以绝大部分的碰撞是无效的。要在碰撞频率项上乘以有效碰撞分数q。上一内容下一内容回主目录返回2020/1/15反应截面(crosssectionofreaction)rcr式中br是碰撞参数临界值,只有碰撞参数小于br的碰撞才是有效的。)1(rc2AB2rrdb反应截面的定义式为:r为反应阈能,从图上可以看出,反应截面是相对平动能的函数,相对平动能至少大于阈能,才有反应的可能性,相对平动能越大,反应截面也越大。c上一内容下一内容回主目录返回2020/1/15反应阈能(thresholdenergyofreaction)RTEE21ac反应阈能又称为反应临界能。两个分子相撞,相对动能在连心线上的分量必须大于一个临界值Ec,这种碰撞才有可能引发化学反应,这临界值Ec称为反应阈能。Ec值与温度无关,实验尚无法测定,而是从实验活化能Ea计算。上一内容下一内容回主目录返回2020/1/15碰撞理论计算速率系数的公式]A][B[d]A[dPBAktr有(2))exp()8(:(1))exp()8(c2/12ABBc2/1B2ABRTERTLdkTkTkLdk则21/2cAAA282Ap)exp()(3)2ERTkdLMRT((1)(2)式完全等效,(1)式以分子计,(2)式以1mol计算。上一内容下一内容回主目录返回2020/1/15反应阈能与实验活化能的关系实验活化能的定义:TkRTEdlnd2a碰撞理论计算速率系数的公式:)exp()8(c2/12ABRTERTdk将与T无关的物理量总称为B:c1lnlnln2EkTBRT有TRTETk21dlnd2cRTEE21ca总结:阈能Ec与温度无关,但无法测定,要从实验活化能Ea计算。在温度不太高时,Ea≈Ec上一内容下一内容回主目录返回2020/1/15概率因子(probabilityfactor)概率因子又称为空间因子或方位因子。由于简单碰撞理论所采用的模型过于简单,没有考虑分子的结构与性质,所以用概率因子来校正理论计算值与实验值的偏差。P=k(实验)/k(理论)上一内容下一内容回主目录返回2020/1/15概率因子(probabilityfactor)(1)从理论计算认为分子已被活化,但由于有的分子只有在某一方向相撞才有效;(2)有的分子从相撞到反应中间有一个能量传递过程,若这时又与另外的分子相撞而失去能量,则反应仍不会发生;(3)有的分子在能引发反应的化学键附近有较大的原子团,由于位阻效应,减少了这个键与其它分子相撞的机会等等。理论计算值与实验值发生偏差的原因主要有:上一内容下一内容回主目录返回2020/1/15碰撞理论的优缺点优点:碰撞理论为我们描述了一幅虽然粗糙但十分明确的反应图像,在反应速率理论的发展中起了很大作用。缺点:但模型过于简单,所以要引入概率因子,且概率因子的值很难具体计算。阈能还必须从实验活化能求得,所以碰撞理论还是半经验的。对阿仑尼乌斯公式中的指数项、指前因子和阈能都提出了较明确的物理意义,认为指数项相当于有效碰撞分数,指前因子A相当于碰撞频率。它解释了一部分实验事实,理论所计算的速率系数k值与较简单的反应的实验值相符。上一内容下一内容回主目录返回2020/1/1511.2过渡态理论过渡态理论双原子分子的莫尔斯势能曲线三原子分子的核间距势能面势能面的类型反应坐标马鞍点势能面剖面图三原子体系振动方式统计热力学方法计算速率系数热力学方法计算速率系数活化焓与实验活化能的关系势能面投影图过渡态理论的优缺点上一内容下一内容回主目录返回2020/1/15过渡态理论(transitionstatetheory)过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。他们认为由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成这个过渡态必须吸取一定的活化能,这个过渡态就称为活化络合物,所以又称为活化络合物理论。用该理论,只要知道分子的振动频率、质量、核间距等基本物性,就能计算反应的速率系数,所以又称为绝对反应速率理论(absoluteratetheory)。上一内容下一内容回主目录返回2020/1/15双原子分子的莫尔斯势能曲线莫尔斯(Morse)公式是对双原子分子最常用的计算势能Ep的经验公式:pe00()[exp{2()}2exp{()}]ErDarrarr式中r0是分子中双原子分子间的平衡核间距,De是势能曲线的井深,a为与分子结构有关的常数.该理论认为反应物分子间相互作用的势能是分子间相对位置的函数。上一内容下一内容回主目录返回2020/1/15双原子分子的莫尔斯势能曲线当rr0时,有引力,即化学键力。时的能级为振动基态能级,E0为零点能。0AB双原子分子根据该公式画出的势能曲线如图所示。当rr0时,有斥力。D0为把基态分子离解为孤立原子所需的能量,它的值可从光谱数据得到。上一内容下一内容回主目录返回2020/1/15双原子分子的莫尔斯势能曲线上一内容下一内容回主目录返回2020/1/15三原子分子的核间距以三原子反应为例:ABC[ABC]ABC当A原子与双原子分子BC反应时首先形成三原子分子的活化络合物,该络合物的势能是3个内坐标的函数:),,(),,(ABCBCABPPCABCABPPrrEErrrEE或这要用四维图表示,现在令∠ABC=180°,即A与BC发生共线碰撞,活化络合物为线型分子,则EP=EP(rAB,rBC),就可用三维图表示。上一内容下一内容回主目录返回2020/1/15三原子分子的核间距上一内容下一内容回主目录返回2020/1/15势能面对于反应:[ABC]ABCABC令∠ABC=180o,EP=EP(rAB,rBC)。随着核间距rAB和rBC的变化,势能也随之改变。这些不同点在空间构成高低不平的曲面,称为势能面,如图所示。上一内容下一内容回主目录返回2020/1/15势能面图中R点是反应物BC分子的基态,随着A原子的靠近,势能沿着RT线升高,到达T点形成活化络合物。随着C原子的离去,势能沿着TP线下降,到P点是生成物AB分子的稳态。D点是完全离解为A,B,C原子时的势能;OEP一侧,是原子间的相斥能,也很高。上一内容下一内容回主目录返回2020/1/15势能面上一内容下一内容回主目录返回2020/1/15势能面的类型目前常见的势能面有两种:一种是Eyring和Polanyi利用London对三原子体系的量子力学势能近似式画出的势能面称为London-Eyring-Polanyi势能面,简称LEP势能面。另一种是Sato又在这个基础上进行了修正,使势垒顶端不合理的势阱消失,这样得到的势能面称为London-Eyring-Polanyi-Sato势能面,简称LEPS势能面。上一内容下一内容回主目录返回2020/1/15反应坐标(reactioncoordinate)反应坐标是一个连续变化的参数,其每一个值都对应于沿反应体系中各原子的相对位置。如在势能面上,反应沿着RT→TP的虚线进行,反应进程不同,各原子间相对位置也不同,体系的能量也不同。如以势能为纵坐标,反应坐标为横坐标,

1 / 142
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功