14空间几何体

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/8第1讲空间几何体【课前小测】1.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+3B.18+3C.21D.182.(2015·山东)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π3.(2014·湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.3551134.(2014·江苏)设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等,且S1S2=94,则V1V2的值是________.2/8【考点1】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1(1)(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()3/8(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【考点2】几何体的表面积和体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2(1)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5(2)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连接EF,FB,DE,BD则几何体EFC1-DBC的体积为()A.66B.68C.70D.724/8练2(2015·四川)在三棱柱ABCA1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是________.【考点3】多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例3(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π(2)(2015·课标全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π练3在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为22,32,62,则三棱锥A-BCD的外接球体积为____________________.【巩固练习】1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A.16B.82+8C.22+26+8D.42+46+85/82.如图,将边长为5+2的正方形,剪去阴影部分后,得到圆锥的侧面和底面的展开图,则圆锥的体积是()A.2303πB.263πC.303πD.603π3.(2015·临汾一中测试)在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为()A.6πB.12πC.32πD.36π【课后作业】1.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24D.302.如图是棱长为2的正方体的表面展开图,则多面体ABCDE的体积为()A.2B.23C.43D.836/83.已知正四棱锥的底面边长为2a,其侧视图如图所示.当正视图的面积最大时,该正四棱锥的表面积为()A.8B.8+82C.82D.4+824.(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于()A.1B.2C.4D.85.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A.32πB.32πC.3πD.12π6.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.7.(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.9.已知某几何体的三视图如下图所示,则该几何体的表面积为________.7/810.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.11.如图,侧棱长为23的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面△AEF,则截面△AEF的周长的最小值为____________________________________________________.8/812.已知矩形ABCD的面积为8,当矩形周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球的表面积等于________.13.已知正方体ABCD-A1B1C1D1的棱长为1,给出下列四个命题:①对角线AC1被平面A1BD和平面B1CD1三等分;②正方体的内切球、与各条棱相切的球、外接球的表面积之比1∶2∶3;③以正方体的顶点为顶点的四面体的体积都是16;④正方体与以A为球心,1为半径的球的公共部分的体积是π6.其中正确命题的序号为______.14.如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=30°.(1)求证:EF⊥PB;(2)试问:当点E在何处时,四棱锥P—EFCB的侧面PEB的面积最大?并求此时四棱锥P—EFCB的体积.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功