马思特学校木木数学1数论整除的性质:性质一:加减性如果a,b都能被c整除,那么它们的和与差也能被c整除.性质二:如果b与c的积能整除a,那么b与c都能整除a.性质三:如果b,c都能整除a,且b与c互质,那么b与c的积能整除a.性质四:传递性如果c能整除b,b能整除a,则c能整除a.整除的特征:1、除数为2:末位数字为偶数,即末位数字为0、2、4、6、8.2、除数为5:末位数字为0、5.3、除数为4(25):末两位数字所表示的数能被4(25)整除.4、除数为8(125):末三位数字所表示的数能被8(125)整除.5、除数为3:各位数字之和能被3整除.6、除数为9:各位数字之和能被9整除.7、除数为11:奇数位上数字之和与偶数位上数字之和的差(大减小)能被11整除.8、除数为7、11、13:末三位数字所表示的数与末三位之前的数字所表示的数的差(大减小)能被7(或11、13)整除.()质数与合数一个数除了l和它本身,不再有别的约数,那么这个数叫做质数.比如2,3,7,37,….一个数除了1和它本身,还有别的约数,那么这个数是合数.比如4,8,14,48,….特别的:1既不是质数也不是合数.1.质因数与分解质因数(算术基本定理)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.把一个合数用质因数相乘的形式表示出来,叫做分解质因数.比如:把42分解质因数应该是,其中2,3,7是42的质因数.又如:,其中2和3都是54的质因数.2.利用分解质因数求约数的个数一般地,如果分解质因数有下列形式:其中是互不相同的质因数,而是指数,即对应A包含各个质因数的个数.那么A的所有约数的个数为。比如:,那么300的所有约数共有个.约数与倍数马思特学校木木数学2约数与倍数的关系很简单,其实就是整除关系的另外一种称谓;当然也有概念的延伸,就是在多个数之间去研究公约数和公倍数,经常地应用最大公约数与最小公倍数解题.下面我们就先回顾基本的概念:1.公约数与最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12.18的约数有l,2,3,6,9,18那么它们的公约数有l,2,3,6;其中最大公约数为6.2.公倍数与最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.例如:15的倍数有:15,30,45,60,75,90,105,120,….10的倍数有:10,20,30,40,50,60,70,80,90,….那么它们的公倍数有30,60,90,…是有无穷多个的;而最小公倍数却只有一个,为30.3.互质的概念如果两个数的最大公约数是1,那么这两个数互质.显然的,两个不同的质数一定互质.4.求最大公约数的方法:1)短除2)分解质因数3)辗转相除法求最大公约数5.最大公约数与最小公倍数性质1)分数的计算;2)约倍关系余数1)一个数除以2(5)的余数,看个位除以2(5)的余数;2)一个数除以4(25)的余数,看末两位除以4(25)的余数;3)一个数除以8(125)的余数,看末三位除以8(125)的余数;4)一个数除以3(9)的余数,看数字和除以3(9)的余数5)一个数除以11的余数,奇数位数字和减去偶数位数字和的差即为余数,如果奇数位数字和比偶数位数字和小,加上11的倍数再减去偶数位数字和。6)多个数的乘积除以某一个数的余数等于每一个数除以这个数的余数的乘积。(积的余数等于余数的积)马思特学校木木数学3一、单选题1.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是()A.1235B.1245C.24152.在1至300的全部自然数中,是3的倍数或5的倍数的数共有()个.A.139B.140C.141D.1423.姚明(2米)的身高是我的两倍,设我的身高为x,下列等量关系式正确的是()A.2x=2B.x=2C.0.2x=24.如图,在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如,在填入的81个数中,()多.A.奇数B.偶数5.四位数同时是2、3和5的倍数,第一个里最大能填()A.9B.8C.7D.66.下面哪些数能被11整除()A.323532B.38380C.9787687.在下列四个算式中:÷=2,E×F=0,G﹣H=1,I+J=4,A~J代表0~9中的不同数字,那么两位数不可能是()A.54B.58C.92D.968.小明在做连续自然数1、2、3、4、5、…求和时,把其中一个数多加了一次,结果和为149,那么多加的这个数是()A.13B.14C.15D.169.已知a、b、c都是整数,则下列三个数中,整数的个数为()A.至少有一个B.仅有一个C.至少有二个马思特学校木木数学410.如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数组成的.那么,这样的四位数最多能有()个.A.17B.42C.24D.168二、判断题11.正方形的周长为4条边长度之和,设其中一条长度为a,其周长就为C=4a12.如果A是奇数,那么1093+89+A+25的结果还是奇数.13、已知五个连续非0自然数的平均数是20,这五个非0自然数中最大的一个是24.14..a、b两数的积是a、b两数的最小公倍数,那么a、b两数的公因数只有1.15、0能被任何非0自然数整除.三、填空题1.用某数分别去除数560、906和1252,所得余数都相同,则这个数是________.2.如果三个连续自然数的最小公倍数是1092,那么这三个数是________.3.已知是一个四位数,且=□997,方格中应填________.4.在0,1,2,3,4,5,6中选取5个数组成一个五位数,若这个五位数能被6整除,最大为________..5、一个两位数个位上的数字与十位上的数字的和为11,交换个位与十位上的数字后,得到的新两位数与原两位数的和为________.6.有一整数,除300,262,205得到的余数相同,这个整数是________.7.学校买来桌椅若干,共用去2500元,每把椅子50元,每张桌子150元.买椅子________张.8.有一个自然数,用它去除226余a,去除411余a+1,去除527余a+2,则a=________.四、解答题1.你已经知道了2、3、5的倍数的特征,请你和同伴研究9的倍数和4的倍数的特征,并把你们的研究结论记录下来。能被9整除数的特征是。能被4整除数的特征是。2..把自然数a分解质因数是a=2×32×5,则a的质因数有多少个?3.设置一取奶站,方便上述三栋楼居民取奶.牛奶公司认为取奶站设置要符合:东区(A号楼)所有取奶人每日到奶站所走距离之和等于西区(1号与2号楼)所有取奶人每日到奶站所走距离之和,各楼订奶户数如下表所示:马思特学校木木数学5你认为这个奶站应设在哪里?五、应用题1..今天奶奶发现家里的日历已经7天没有翻了,就一次翻了7张.这7张的日期加起来和是77,今天是多少号?2.教室里有一盏灯正亮着,突然停电了.停电后,淘气拉了一下电灯的开关,过了一会,笑笑也拉了一下开关.如果这个班有45名同学,每人都拉一下开关,来电后,灯是开着,还是关着?你能说明理由吗?3.某班级有学生若干人,若5人一排最后余1人;7人一排余3人,这个班级至少有学生多少人?4..教室里共有男女生若干人,男生的上衣有5个扣子,女生的上衣有4个扣子,如果学生总数是个奇数,扣子总数是偶数,问男生人数是奇数还是偶数?5.一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下.翻动两次,杯口朝上…翻动10次呢?翻动100次?105次?马思特学校木木数学6