12009年河北省中考数学试题评析2009年的数学试题在继承我省近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、变中求新”的命题原则,贯彻《义务教育课程标准(实验稿)》(以下简称《课程标准》)和《河北省2009年中考文化课学科说明》(以下简称《学科说明》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识,整套试题充满着人文关怀.一、总体评价试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现和落实新课程改革的理念和精神.整套试题覆盖面广,题量适当,结构合理,难度适中,内容新颖,表述科学.在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、开放性、应用性、探究性和综合性.在具体操作上,紧扣《学科说明》,参照我省各地使用的不同版本教科书,强调教材的重要性,保证素材的公平性,对教学工作能够起到明显的指导作用.1.整体稳定,局部调整今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:选择题由原来的10个小题增至12个;填空题由原来的8个小题减至6个;解答题依然是8个小题.各题型的分值和部分试题的考查重点,也作了相应的调整.2.全面考查,突出重点纵观整套试题,覆盖近百个知识点.所关注的内容,是支撑学科的基本知识、基本技能和基本思想.强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法.试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、相交线与平行线、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想、统计与随机意识等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念.试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查.3.层次分明,确保试题合理的难度和区分度试题在结构上形成合理的层次,整套试题从易到难形成梯度.其中第一、二大题分三个层次:第一层次(第1~7、13~15小题)考查基础知识、基本技能,判断、运算或操作方式单一,学生能直接上手;第二层次(第8、9、11、16~18小题)是小范围的综合题,旨在考查最基本的数学方法和数学思想;第三层次(第10、12小题)更多的是关注数学思辨和思维过程.第三大题注重数学能力,也分三个层次:第一层次(第19~22小题),考查代数式变形和运算的能力,用所学知识解决简单实际问题的能力,对统计与概率知识的理解与应用,以及对函数概念的理解与应用的能力;第二层次(第23、24小题),考查学生的形成性学习方法与能力,以及逻辑思维能力.第三个层次(第25、26小题),考查学生的综合运用能力,包括知识综合、方法综合以及数学思想的综合运用.同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度,有利于高一级学校选拔新生.4.科学严谨,确保试题的信度、效度和自洽性试卷题目陈述简明、科学准确;图形、图象规范美观.凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握;凡是带有创新成分的试题,其内容均属《课程标准》和《学科说明》要求范围之内的核心知识.这就确保了考试具有较高的信度.每类题型由易到难形成三个难度循环.试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的解答习惯、学习水平和承受能力.后面的几道解答题,设3~4问,形成问2题串,起点很低,循序渐进,层层铺垫,且最后一问思维含量较高,具有一定的挑战性.这样“入口宽、出口窄”的试题设计,有利于学生临场发挥.各类型题目解答起来,容易上手,但要解答完整、准确,则需要具备较强的数学能力.这样的布局,能确保考试具有较高的效度.同时,试题的命制注意了整体的和谐性,试题的搭配,使考查功能之间形成合理的支撑,努力实现试题在能力层面上的相互校正功能.注重了整套试卷题目间的合理性、自洽性与可推广性.二、试题特点1.从全新角度考查基础知识和基本技能要想学好数学,就必须牢固掌握数学的基础知识,并且在不同的环境中能够灵活的加以运用.因此本套试题在关注对基础知识和基本技能考查的同时,特别注意了考查方式的多样化和考查角度的新颖性.例1(第5题)如图1,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于A.30°B.45°C.60°D.90°评析本题旨在考查同弧所对的圆周角与圆心角的关系.但其呈现方式却与众不同,自然而巧妙地把问题置于正方形之中,建立起了知识间的相互联系.例2(第7题)下列事件中,属于不可能事件的是A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于0评析本题考查的是不可能事件的概念,但其中却蕴含着考生对数的基础知识的思考,使这道看似简单的题目变得丰满而扎实.例3(第11题)如图2所示的计算程序中,y与x之间的函数关系所对应的图象应为评析对函数图象的考查是中考命题的常见内容,但本题不是平铺直叙,而是另辟蹊径——借助程序设计的背景,将函数表达式的产生与函数图象的性质完美的衔接起来,设计出了一道新而不偏、新而不怪的好题.2.关注数学思想方法,渗透数学文化数学的思想方法是数学学科的灵魂,它有时并非刻意指向解题所运用的数学知识,而更多的体现在对解题策略的思考和选择上.本套试题在对数学思想与方法的考查方面可谓独树一帜,其往往借助看似平实简洁的问题设置,却凸显了数学思想方法在解题时的重要作用.此外,渗透数学文化、陶冶学生心灵、感受数学魅力,使数学具有更为积极的教育功能,也是命题组在试题命制中始终关注的一个环节.例4(第10题)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图3所示的零件,则这个零件的表面积是A.20B.22C.24D.26例5(第17题)如图4,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,POBA图1ABC图4DEA′取相反数×2+4图2输入x输出yOyx-2-4ADCBO42yO2-4yxO4-2yxx图334=1+39=3+616=6+10图6…图760404015030单位:cmABB则阴影部分图形的周长为cm.评析从表面看,上述两题是对基本几何知识性质(图形的周长和面积)的考查,但通过对解题策略的分析,却不难发现,其关注的核心实际是数学的思想方法,即利用平移和轴对称实现对问题的转化(化归).这两道试题还具有良好的推广性.如例4(第10题)中,让挖去的小正方体经过大正方体的两个面或只在一个面上时,其表面积会怎样变化?例5(第17题)中,点A′在△ABC的内部或边上时,阴影部分的周长有什么不同?等等.例6(第18题)如图5,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.评析本题通过现实有趣的数学情景,将方程思想巧妙地蕴含其中.此外,解法的多样性也是本题的一大特点,既可以形成一元一次方程的模型(设水的深度为未知数),又可以形成二元一次方程组的模型(设两根木棒的长度为未知数),还可以有其他方法.这样使学生单向封闭的思路拓展成多维开放的思路,有效地培养了学生的创新思维能力.例7(第12题)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图6中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是A.13=3+10B.25=9+16C.36=15+21D.49=18+31评析该题以毕达哥拉斯学派的发现为切入点,以数字间的内在关系为背景,不仅考查了学生探究发现规律的能力,而且还可以借助图形进行分析,很好的体现了“数形结合”的思想.同时又向学生渗透了世界古代文化的精深与美妙,有一种内在的和谐与古远幽深的意境,激发了学生对数学文化的热爱,既有趣味性、挑战性,又有教育功能,令人耳目一新.3.联系现实生活,突出应用意识现实生活是数学学科的出发点和最终归宿,让数学回归现实是数学课程改革的重要目标之一.《学科说明》明确指出,要着重考查学生运用所学知识解决简单实际问题的能力,要求学生能够解决带有实际意义的问题,能够解决日常生活中的实际问题,能够用数学语言表达问题.为彰显课程改革的方向,本套试题联系实际的题目占有相当的比例.例8(第25题)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图7是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2mn设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?评析试题在背景呈现上贴近社会现实,充满着生活气息,使学生真实地感受到“数学来源于生活,又返回来指导生活”的价值.这正体现了《课程标准》中提到的“问题情景—建立模型—解释、应用和拓展”的数学学习模式.本题借助一次函数关系式及其性质为知识载图54B图9-3O2O3OAO1CO4体,考查的核心是从现实情景中提取信息、分析数据、建立数学模型的思想和能力.4.在考查思维能力的同时,更关注对思维方式和思维过程的考查在新课程理念的指导下,日常教学中,培养学生数学思维的能力尤为重要.但更重要的是,通过具体有形的数学知识,传递给学生一种数学的思维方式,体验思维和认知的一般方法与过程(数学思考).可以说,今年的数学试题在关注“知识立意”与“能力立意”的同时,又注入了“过程立意”.这必将对今后的教学产生重要的影响.例9(第22题)已知抛物线2yaxbx经过点A(-3,-3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图8,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若4t,求a、b的值,并指出此时抛物线的开口方向;(3)直接..写出使该抛物线开口向下的t的一个值.评析该题以二次函数为背景,但却打破了以往程式化的设问方式,而是带有浓郁的探究成分,清晰地为我们勾勒出了“在两个点确定的情况下,抛物线的某些属性(开口方向)随另一个点的运动而变化”的一个连续的动态过程,将代数演绎与几何直观有机地结合了起来.本题考查的主旨并非是对解题方法和技巧的机械运算,而是巧妙地考查了学生直观思维的过程与方法,正所谓“四两拨千斤”就是这个道理.例10(第23题)如图9-1至图9-5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图9-1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周.(2)如图9-2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转_____周.(2)如图9-3,∠ABC=90°,AB=BC=12c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,