中考网年浙江省初中毕业生学业考试(嘉兴卷)数学试题卷考生须知:1.全卷满分150分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.参考公式:二次函数cbxaxy2)0(a图象的顶点坐标是)44,2(2abacab.温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.实数x,y在数轴上的位置如图所示,则(▲)A.0yxB.0xyC.0yxD.0xy2.若3)2(x,则x的倒数是(▲)A.61B.61C.6D.63.下列运算正确的是(▲)A.baba2)(2B.baba2)(2C.baba22)(2D.baba22)(24.已知数据:2,1,3,5,6,5,则这组数据的众数和极差分别是(▲)A.5和7B.6和7C.5和3D.6和35.判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果是(▲)A.①②都正确B.①②都错误C.①正确,②错误D.①错误,②正确6.解方程xx22482的结果是(▲)A.2xB.2xC.4xD.无解7.沪杭高速铁路已开工建设,某校研究性学习以此为课题,在研究列车的行驶速度时,得0xy(第1题)O1t2tABCtv3508017中考网到一个数学问题.如图,若v是关于t的函数,图象为折线CBAO,其中)350,(1tA,)350,(2tB,)0,8017(C,四边形OABC的面积为70,则12tt(▲)A.51B.163C.807D.160318.已知0a,在同一直角坐标系中,函数axy与2axy的图象有可能是(▲)9.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且OPAB//.若阴影部分的面积为9,则弦AB的长为(▲)A.3B.4C.6D.910.如图,等腰△ABC中,底边aBC,36A,ABC的平分线交AC于D,BCD的平分线交BD于E,设215k,则DE(▲)A.ak2B.ak3C.2kaD.3ka卷Ⅱ(非选择题)二、填空题(本题有6小题,每题5分,共30分)11.用四舍五入法,精确到0.1,对5.649取近似值的结果是▲.12.当2x时,代数式1352xx的值是▲.13.因式分解:)(3)(2yxyx▲.14.如图,AD∥BC,BD平分∠ABC,且110A,则D▲.Oyx11A.xyO11B.xyO11C.xyO11D.(第9题)BACPOADCEB(第10题)ADCB(第14题)中考网.一个几何体的三视图如图所示(其中标注的abc,,为相应的边长),则这个几何体的体积是▲.16.如图,在直角坐标系中,已知点)0,3(A,)4,0(B,对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为▲.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:2182009)(.18.化简:)8(21)2)(2(babbaba.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.20.某工厂用A、B、C三台机器加工生产一种产品.对2009年第一季度的生产情况进行(第15题)abcbyxOAB①②③④4812164中考网统计,图1是三台机器的产量统计图,图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.21.如图,在平行四边形ABCD中,BCAE于E,CDAF于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AHAG,求证:四边形ABCD是菱形.22.如图,曲线C是函数xy6在第一象限内的图象,抛物线是函数422xxy的图象.点),(yxPn(12n,,)在曲线C上,且xy,都是整数.(1)求出所有的点()nPxy,;(2)在nP中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.23.如图,已知一次函数bkxy的图象经过)1,2(A,)3,1(B两点,并且交x轴于点C,(第20题)图2图1ADCBGEHF(第21题)(第22题)642246yxO中考网,(1)求该一次函数的解析式;(2)求OCDtan的值;(3)求证:135AOB.24.如图,已知A、B是线段MN上的两点,4MN,1MA,1MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?2009年浙江省初中毕业生学业考试(嘉兴卷)数学参考答案与评分标准一、选择题(本题有10小题,每题4分,共40分)1.B2.A3.D4.A5.C6.D7.B8.C9.C10.A二、填空题(本题有6小题,每题5分,共30分)11.5.612.513.)3)((yxyx14.3515.abc16.(360),三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12BDCAO11(第23题)yxCABNM(第24题)中考网分,第24题14分,共80分)17.2182009)(2122····················································································6分12····················································································8分18.)8(21)2)(2(babbaba2224214babba········································································6分aba212·······················································································8分19.设xA(度),则20xB,xC2.根据四边形内角和定理得,360602)20(xxx.·······························4分解得,70x.∴70A,90B,140C.·······················································8分20.(1)B机器的产量为150件,·································································2分A机器的产量约为210件.······························································4分(2)C机器产量的百分比为40%.·······························································6分设C机器的产量为x,由%40%25150x,得240x,即C机器的产量为240件.·····························8分21.(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°.····································2分∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.·········································4分∴△ABE∽△ADF···············································································5分(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD.∴△ABG≌△ADH.····················································································8分ADCBGEHF(第21题)中考网∴ADAB.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.································································10分22.(1)∵xy,都是正整数,且xy6,∴1236x,,,.∴1(16)P,,2(23)P,,3(32)P,,4(61)P,······························································4分(2)从1P,2P,3P,4P中任取两点作直线为:21PP,31PP,41PP,32PP,42PP,43PP.∴不同的直线共有6条.··············································································9分(3)∵只有直线42PP,43PP与抛物线有公共点,∴从(2)的所有直线中任取一条直线与抛物线有公共点的概率是3162················12分23.(1)由bkbk321,解得3534bk,所以3534xy····································4分(2)5(0)4C,,5(0)3D,.在Rt△OCD中,35OD,45OC,∴OCDtan34OCOD.··············································································8分(3)取点A关于原点的对称点(21)E,,则问题转化为求证45BOE.由勾股定理可得,5OE,5BE,10OB,∵222BEOEOB,∴△EOB是等腰直角三角形.∴45BOE.∴135AOB°.·······················································································12分24.(1)在△ABC中,∵1AC,xAB,xBC3.BDCAO11(第23题)yxE中考网∴xxxx3131,解得21x.····················································