1立体几何二轮复习建议一、高考地位与考查要求:立体几何主要承载着对高中数学基本能力之一——空间想象能力的考查,因而成为每年数学高考的必考内容.经统计,2008年全国各地高考的19套试题中(每套试题含文理卷各1份,江苏文理合卷),立体几何的小题有32道,解答题有19道;江苏卷只考查了1道解答题(另外在理科附加题中也考查了1道解答题).由此可见立体几何在高考中占有相当重要的地位.但是,立体几何在高考中的占分比重,已随新课程内容的变化有所下降,考查难度也随之减弱.2009年江苏省高考《考试说明》具体考查要求如下:内容要求ABC空间几何体柱、锥、台、球及其简单组合体√三视图与直观图√柱、锥、台、球的表面积与体积√点、线、面之间的位置关系平面及其基本性质√直线与平面平行、垂直的判定与性质√两平面平行、垂直的判定与性质√空间向量与立体几何(附加题部分)空间向量的概念√空间向量共线、共面的充分必要条件√空间向量加法、减法及数乘运算√空间向量的坐标表示√空间向量的数量积√空间向量的共线与垂直√直线的方向向量与平面的法向量√空间向量的应用√不难发现,与以往相比,新高考文理合卷部分对空间中夹角与距离的计算要求大大减弱,空间中线面之间平行、垂直的位置关系受到重视.分析09年对立体几何的考查,填空题可能会以考查基础知识为主,空间几何体的结构、线面位置关系的判断、表面积与体积的计算等知识是重点考查内容,特别是三视图为新课程增加的内容,考查的可能性较大;解答题一般会考查综合能力,与08年高考一样,应当还是考查线面之间的位置关系为主.但08年的考题属于容易题,满分14分,全省均分却高达12.4分左右,所以09年在难度上可能会有所增加,也可能会增加一些较简单的计算等.另外,在理科附加题中运用空间向量证明平行与垂直、计算夹角与距离无疑也是主要考查内容.二、基本题型与基本策略:基本题型一:空间几何体及其表面积与体积的计算(填空题)2例1.已知正四棱柱的底面边长是3,侧面的对角线长是53,则这个正四棱柱的侧面积是.说明:本题主要考查正四棱柱的结构特征、空间几何体侧面积的计算方法,属容易题.例2.一个几何体的三视图如图所示,其中主视图是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为.说明:三视图是新课程的新增内容,近两年其它课改地区的高考试题中经常出现相关试题,通常将之与表面积、体积的计算结合在一起进行考查,应给予重视.基本策略:涉及到柱、锥、台、球及其简单组合体的侧面积和体积的计算问题,要根据其结构特征和公式来计算,另外要重视空间问题平面化的思想和割补法、等积转换法的运用;三视图为新增内容,考查不无可能,关键要培养学生的空间想象能力,会“识图”、“复图”.基本题型二:空间中点线面位置关系的判断(填空题)例3.设α、β为互不重合的平面,m、n为互不重合的直线,给出下列四个命题:①若m⊥α,nα,则m⊥n;②若mα,nα,m//β,n//β,则α//β;③若α⊥β,α∩β=m,nα,m⊥n,则n⊥β;④若m⊥α,α⊥β,m//n,则n//β.其中所有正确命题的序号是.说明:本类题为高考常考题型,其本质实为多项选择题.主要考查空间中线面之间的位置关系,要求熟悉有关公理、定理及推论,并具备较好的空间想象能力,做到不漏选多选.例4.α、β为两个互相垂直的平面,a、b为一对异面直线,下列条件中:①a//α,bβ;②a⊥α,b//β;③a⊥α,b⊥β;④a//α,b//β且a与α的距离等于b与β的距离.其中是a⊥b的充分条件的有.说明:与例3一样,本题主要考查空间中线面之间的位置关系,特别是考查证明线线垂直的常用方法.基本策略:要求学生能够熟练运用4条公理、3条推论和9条定理来判断有关空间位置关系的命题真假,能对一些真命题进行证明或对假命题举出反例.培养学生善于利用身边的工具与情境(如纸笔、桌面、墙角等)构造具体模型,将抽象问题具体化处理,提高他们的空间想象能力.基本题型三:空间中点线面位置关系的证明(解答题)例5.如图,已知在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是主视图俯视图左视图3AA1、BB1、AB、B1C1的中点.(1)求证:面PCC1⊥面MNQ;(2)求证:PC1∥面MNQ.说明:本类题主要以空间几何体为载体,考查空间中线面位置关系(平行与垂直)的判定与性质,是每年高考不可避免的考查内容.此类题既可考查几何体的概念和性质,又能考查空间的线面关系,还有可能结合一些简单的运算,可以比较全面地考查学生的能力.例6.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.说明:江苏卷08年的考题与例5相似,仅仅简单考查了位置关系的证明,综合性不强.09年立体几何考题可能会增加适当的计算量,如本题中体积的计算等;或是添设“探究性”、“存在性”的小问,如本题中第3小问,应予以重视.例7.已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且AA1=3,俯视图中C、C1分别是所在边的中点,设D为AA1的中点.(1)作出该几何体的直观图并求其体积;(2)求证:平面BB1C1C⊥平面BDC1;(3)BC边上是否存在点P,使AP//平面BDC1?若不存在,说明理由;若存在,请证明你的结论.说明:本题综合考查了作图、计算、证明、探究等能力,这种类型的试题也应引起重视.三视图内容也很可能在大题中采用本题的方式进行考查,关键要求学生先能够准确“复图”,再进行其他常规解答.基本策略:证明或探究空间中线线、线面与面面平行与垂直的位置关系,一要熟练掌握所有判定与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行;二要掌握解题时由已知想性质、由求证想判定,即分析法与综合法相结合来寻找证明的思路;三要严格要求学生注意表述规范,推理严谨,避免使用一些正确但不能作为推理依据的结论.此外,要特别注重培养学生的空间想象能力,会分析一些非常规放置的空间几何体(如例6、例7中侧面水平放置的棱锥、棱柱等),会画空间图形的三视图与直观图,且会把三视图、直观图还原成空间图形.BCADEFMA1ABCPMNQB1C1BCA主视图左视图俯视图C1A1CACAC1A1BB14基本题型四:运用空间向量证明与计算(理科附加解答题)例8.如图,在四棱锥PABCD中,底面ABCD为正方形,PD平面ABCD,且PD=AB=a,E是PB的中点.(1)在平面PAD内求一点F,使得EF平面PBC;(2)求二面角FPCE的余弦值大小.说明:本题主要考查对空间几何体合理建立空间直角坐标系的能力,运用空间向量探究空间中垂直的位置关系、计算二面角大小的常见问题.向量法是一种独特的方法,因为它不但是传统几何方法的有力补充,而且还可以解决一些较难的立几问题,如二面角的求解等.例9.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1.(1)求二面角A—DF—B的大小;(2)在线段AC上找一点P,使PF与AD所成的角为600,试确定点P的位置.说明:本类题主要考查通过向量解决空间中的夹角问题(包括线线角、线面角与二面角),是向量作为一门工具解决立几问题的典型体现.基本策略:空间向量的基础知识要引导学生类比于《必修4》中平面向量的相关知识进行整理与记忆;要注意培养学生对空间几何体合理建系的意识,并能准确用向量来刻画直线和平面的“方向”,即方向向量与法向量;要求学生理解用向量判定空间位置关系、求解夹角与距离的原理,并掌握一般求解步骤.其中,线线角、线面角与二面角是本类题型中的重点考查对象,应加强训练.此外,在计算平面的法向量、探究点的位置(如例8(1)、例9(2))等问题中,要引导学生善于运用“待定系数法”合理设出坐标,寻找满足条件的方程(组)来解决问题的方法.三、二轮专题与课时建议:专题内容说明第一课时空间几何体及其表面积与体积多面体与旋转体、三视图、直观图、表面积和体积以小题训练为主第二课时第三课时空间中点线面之间的位置关系(1)(2)点、线、面之间的位置关系,线线、线面、面面平行与垂直的定义、判定和性质,并能论证和探究有关问题以大题训练为主(强调规范解答过程)第四课时空间向量与立体几何空间向量的概念及运算、应用(判定位置关系、计算夹角与距离)以大题训练为主PABCDEBEAFDC