2010年广州市中考试题数学第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.(2010广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18%B.-8%C.+2%D.+8%2.(2010广东广州,2,3分)将图1所示的直角梯形绕直线l旋转一周,得到的立体图开是()lA.B.C.D.图13.(2010广东广州,3,3分)下列运算正确的是()A.-3(x-1)=-3x-1B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3D.-3(x-1)=-3x+34.(2010广东广州,4,3分)在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是()A.2.5B.5C.10D.155.(2010广东广州,5,3分)不等式110320.xx,≥的解集是()A.-31<x≤2B.-3<x≤2C.x≥2D.x<-36.(2010广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是()图2A.41B.21C.43D.17.(2010广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52B.32C.24D.9主视图俯视图3442ABCDABCD8.(2010广东广州,8,3分)下列命题中,正确的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0,且b=0D.若a·b=0,则a=0,或b=09.(2010广东广州,9,3分)若a<1,化简2(1)1a=()A.a﹣2B.2﹣aC.aD.﹣a10.(2010广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母abcdefghijklm序号0123456789101112字母nopqrstuvwxyz序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是()A.wkdrcB.wkhtcC.eqdjcD.eqhjc第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.(2010广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.12.(2010广东广州,12,3分)若分式51x有意义,则实数x的取值范围是_______.13.(2010广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S=51、2乙S=12.则成绩比较稳定的是_______(填“甲”、“乙”中的一个).14.(2010广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________.(结果保留)15.(2010广东广州,15,3分)因式分解:3ab2+a2b=_______.16.(2010广东广州,16,3分)如图4,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有_____个.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2010广东广州,17,9分)解方程组.1123,12yxyx18.(2010广东广州,18,9分)如图5,在等腰梯形ABCD中,AD∥BC.求证:∠A+∠C=180°19.(2010广东广州,19,10分)已知关于x的一元二次方程)0(012abxax有两个相等的实数根,求4)2(222baab的值。20.(2010广东广州,20,10分)广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解基本了解不太了解频数40120364频率0.2m0.180.02(1)本次问卷调查取样的样本容量为_______,表中的m值为_______.(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?基本了解不太了解2%18%21.(2010广东广州,21,12分)已知抛物线y=-x2+2x+2.(1)该抛物线的对称轴是,顶点坐标;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;x……y……(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.-5-4-3-2-1O12345xy-1145°39°DCAEBCPDOBAECDBAEOxyBAOCyx22.(2010广东广州,22,12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米)23.(2010广东广州,23,12分)已知反比例函数y=8mx(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图9,过点A作直线AC与函数y=8mx的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若2SDE=43,求△ABC的周长.25.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.