第四章膜分离技术5学时授课内容各种膜分离法及其原理膜材料及其特性膜组件操作特性膜的污染与清洗学习目的和要求在掌握各种膜分离方法和原理的基础上,进一步了解膜特性及操作特点和影响膜分离速度的因素以及膜分离过程。清楚膜分离法在生物产物回收和纯化方面的应用。1、引言(1)膜的概念在一种流体相间有一层薄的凝聚相物质,其把流体相分隔开来成为两部分,这一薄层物质称为膜。膜本身是均一的一相或由两相以上凝聚物构成的复合体被膜分开的流体相物质是液体或气体膜的厚度应在0.5mm以下,否则不能称其为膜(2)膜分离膜分离是利用具有一定选择性透过特性的过滤介质进行物质的分离纯化。(3)膜分离技术膜分离技术:利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。(4)分离过程中膜的功能物质的识别和透过是使混合物中各组分之间实现分离的内在因素;界面提供一种状态,将透过液和保留液分为互不混合的两相反应场膜表面及孔内表面含有与特定溶质具有相互作用能力的官能团,通过物理、化学或生化反应提高膜分离的选择性和分离度;(5)膜的分类按孔径大小:微滤膜、超滤膜、反渗透膜、纳滤膜按膜结构:对称性膜、不对称膜、复合膜按材料分:合成有机聚合物膜、无机材料膜2、各种膜分离方法及其原理微滤和超滤反渗透透析纳滤电渗析渗透气化要求学习要求:各种膜分离法及其原理理解:微滤、超滤、反渗透、透析、电渗析和渗透汽化等方法的原理应用:掌握各种膜的应用范围膜分离技术的类型和定义膜分离过程的实质是物质透过或被截留于膜的过程,近似于筛分过程,依据滤膜孔径大小而达到物质分离的目的,故而可以按分离粒子大小进行分类:微滤(MF):以多孔细小薄膜为过滤介质,压力差为推动力,使不溶性物质得以分离的操作,孔径分布范围在0.025~14μm之间;超滤(UF):分离介质同上,但孔径更小,为0.001~0.02μm,分离推动力仍为压力差,适合于分离酶、蛋白质等生物大分子物质;反渗透(RO):是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在0.0001~0.001μm之间;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透);纳滤:以压力差为推动力,从溶液中分离300~1000小分子量的膜分离过程,孔径分布在平均2nm;电渗析:以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作;微滤超滤纳滤反渗透悬浮颗粒大分子有机物糖类等小分子有机物,二价盐或多价盐单价盐水各种膜的分离特性各种膜分离方法的应用范围(1)渗透和渗透现象水分子透过半透膜由纯水迁移到盐水溶液中的现象叫做渗透渗透与反渗透渗透压随着渗透过程进行,通过半透膜进入盐水溶液中的水分子与通过半透膜离开盐水溶液的水分子相等,所以它们处于动态平衡。此时,盐水溶液和纯水间的液面差表示盐水的渗透压。渗透压的大小与盐水的浓度直接相关。BAABvRTppln1反渗透的概念在外加压力驱动下借助半透膜的选择截留作用溶剂由高浓度溶液透过半膜向低浓度渗透称为反渗透反渗透原理根据不可逆过程的热力学,非离子型溶剂的摩尔通量N1与化学势梯度成正比,dzdRTcDN1111dzdpvdzadRTdzd111lnlpRTvcDN1111溶剂的摩尔通量:溶剂的质量通量:pAJ11反渗透原理溶质传质的主要推动力在于浓差。根据Fick定律,其摩尔通量为lpRTvcDN1111lcDN222质量通量:lcmDJ222溶剂溶质摩尔通量:lcDN222pAJ11pLJJPLV1体积通量:反渗透原理提高反渗透操作压力有利于实现溶质的高度浓缩。pLcJJcPVP222(2)超滤和微滤的概念超滤超滤是根据高分子溶质之间或高分子与小分子溶质之间分子量的差别进行分离的方法。微滤微滤是一种从悬浮液中分离固形成分的方法,是根据料液中的固形成分与溶液溶质在尺寸上的差异进行分离的方法超滤原理超滤膜一般为非对称膜,具有较小的孔径(约为10一200Å),能够截留分子量为0.5kDa以上的溶质分子或生物大分子。料液在压力差作用下,其中溶剂透过膜上的微孔形成透过液;而大分子溶质则被截留,从而实现料液中大分子溶质和溶剂间的分离。超滤膜对溶质的截留机理主要是筛分作用,超滤膜的膜孔大小和形状决定超滤膜的截留效果。除此以外,溶质大分子在膜表面和孔道内的吸附和滞留也具有截留溶质大分子的作用。超滤所用操作压差在0.1~1.0MPa之间。微滤的原理微滤通常采用孔径为0.02~10微米的微孔膜进行,其可截留直径0.01-10微米的固体粒子或分子量大于1000kDa的高分子物质。料液在压差作用下流经微滤膜,料液中的溶剂和溶质分子透过微孔形成透过液;而尺寸大于膜孔的固形成分则被截留,从而实现料液中固形成分与溶液的分离。微滤膜对微粒的截留也是基于筛分作用,其膜的分离效果是膜的物理结构,孔的形状和大小所决定。操作压力差一般为0.01~0.2MPa。超滤和微滤的特点超滤和微滤都是利用膜的筛分作用,以压差为推动力;2.与反渗透膜相比,超滤和微滤膜具有明显的孔道结构;3.操作压力较反渗透操作低,超滤操作压力在0.1~1.0MPa,微滤操作压力更小(0.05~0.5MPa);膜过滤的基础理论通透量理论:一种基于粒子悬浊液在毛细管内流动的毛细管理论。水通量(Jw)和截留率(R)W—透水量,A—膜的有效面积,τ—时间c1—料液中溶质浓度,c2—透过液中溶质浓度AWJw121cccR超滤的基本方程)(apLJpwpL:穿透度(单位时间、单位膜面积的处理量)实现超滤和反渗透的条件超滤:需要增加流体的静压力,改变天然过程的方向,才可能发生含有低分子量化合物的溶剂流通过膜,此时的推动力是流体静压力与渗透压的压差;反渗透:过程类似于超滤,只是纯溶剂通过膜,而低分子量的化合物被截留。因此,操作压力比超滤大得多。因此,超滤和反渗透通常又被称之为“强制膜分离过程”atmpppp0atmpppp0(3)透析的概念利用具有一定孔径大小、高分子溶质不能透过的亲水膜将含有高分子溶质和其它小分子溶质的溶液与纯水或缓冲液分隔。由于膜两侧的溶质浓度不同,高分子溶液中的小分子溶质在浓差作用下透过亲水膜进入缓冲液中。这种溶质从半透膜的一侧透过膜至另一侧的过程,称为透析。透析原理透析通常采用孔径为5~10nm的亲水膜形成的透析袋中进行,以截留溶液中的高分子溶质。装入透析袋中的料液封口后浸入透析液中。透析膜两端溶液中的分子由于浓度差而互相扩散,导致料液中的小分子溶质进入透析液中;同时透析液中的溶质分子则进入料液中,完成溶液的替换。(4)电渗析概念电渗析是利用分子的荷电性质荷分子大小的差别进行分离的膜分离法。电渗析过程采用的膜材料主要为离子交换膜,其表面和孔道内键合有离子交换基团。电渗析原理电渗析技术是在直流电场的作用下,由于离子交换膜的阻隔作用,实现溶液的淡化和浓缩,分离推动力是静电引力。(5)渗透气化原理渗透气化原理如图所示。疏水膜的一侧通入料液,另一侧(透过侧)抽真空或通入惰性气体,使膜两侧产生溶质分压差。在分压差作用下,料液中溶质溶于膜内,扩散通过膜,在透过侧发生气化,气化的溶质被膜装置外设置的冷凝器回收。渗透气化是根据溶质间透过膜的速度不同,使混合物得到分离。渗透气化特点渗透气化过程中溶质发生相变,透过侧溶质以气体状态存在,因此消除了渗透压作用,从而使渗透气化在较低的压力下进行,适于高浓度混合物分离。渗透气化利用溶质之间膜透过性的差别,适于共沸物和挥发度相差较小的双组分溶液的分离。(6)纳米膜过滤技术介于反渗透与超滤膜之间,能截留有机小分子而使大部分无机盐通过;特点:在过滤分离过程中,能截留小分子有机物,并可以同时透析除盐,集浓缩与透析为一体;操作压力低纳滤膜的性质与特点有多层聚合薄膜组成,滤膜为多孔性材料,平均孔径为2nm,截留分子量范围在100~200道尔顿之间;同样要求其具有良好的热稳定性、pH稳定性、有机溶剂稳定性;主要产品:MembraneproductsKiryatWeizmann,MPW(以色列)DesalinationSystem(美国)SelRO,DESAL-5,FT-40等系列膜,Filmtech公司(美国,明尼苏达)纳米过滤的分离机理纳滤分离机理与反渗透膜了类似,同样遵循,基本的膜传递方程:)(apLJpw纳滤的应用行业处理对象行业处理对象制药工业母液中有效成分的回收抗菌素的分离纯化维生素的分离纯化氨基酸的脱盐与纯化化工行业酸碱纯化、回收电镀液中铜的回收食品工业乳清脱盐与浓缩苛性碱回收纯水制备超高纯水水的脱盐地下水的净化染料工业活性染料的脱盐与回收废水处理印染厂废水脱色造纸厂废水净化(7)膜亲和过滤法膜亲和过滤法是传统膜分离技术与亲和分离技术的集成,是一种十分有效的分离方法。内容:包括两个分支亲和膜分离:制备带有亲和配基的分离膜,直接进行产物分离;亲和-错流膜过滤:将水溶性或非水溶性的高分子亲和载体与产物进行特异性反应,然后进行错流过滤;亲和膜分离技术分离膜的改性:通过化学改性,在载体表面连接上一条“手臂链”(大于三个碳原子);亲和膜制备:选用合适的配基(Ligand),与手臂链相连,构成带有亲和配基的分离介质;亲和络合:将混合物缓慢地通过膜,使要分离的物质与亲和配基产生特异性作用,形成配基与配位物(Ligate)的复合体;洗脱:改变条件(洗脱液组成、pH、离子强度、温度等),使复合物解离;亲和膜再生:洗涤、再生、平衡,以备下次操作使用;需解决的关键问题膜表面要有足够多的并可利用的化学基团;表面积和孔径要足够大孔分布要窄而均匀,以获得高的通透量和分离效率:机械强度要高:要耐酸碱和高温;亲和膜分离操作方式亲和超滤过程(分离目标物的同时,浓缩其他成分)微孔亲和过滤过程(仅分离目标物)亲和膜过滤纯化伴刀豆蛋白A的实验装置3、膜的材料及其特性识记:膜材料选择标准理解:膜结构特性,特别是对称和不对称膜的结构特点应用:通过水通量的不同选择适当的膜材料3、膜材料的特性(1)膜材料基本要求:耐压:膜孔径小,要保持高通量就必须施加较高的压力,一般模操作的压力范围在0.1~0.5MPa,反渗透膜的压力更高,约为1~10MPa耐高温:高通量带来的温度升高和清洗的需要耐酸碱:防止分离过程中,以及清洗过程中的水解;化学相容性:保持膜的稳定性;生物相容性:防止生物大分子的变性;成本低;(2)常用膜材料无机多孔膜陶瓷膜天然高分子材料醋酸纤维素膜合成高分子材料缩合系聚合物(聚砜类)、聚烯烃及其共聚物、全氟磺酸共聚物和全氟羧酸共聚物、聚碳酸酯;(3)膜的孔道结构对称膜(symmetricmembranes)膜截面的膜厚方向上孔道分布均匀。对称膜的传质阻力大,透过通量低,并且容易污染,清洗困难。不对称膜(asymmetricmembranes)起膜分离作用的表面活性层:膜层很薄,孔径微细,透过通量大、膜孔不易堵塞、易清洗。和起支撑强化作用的惰性层:惰性层孔径较大,对流体透过无阻力。膜的孔道特性孔径孔径分布孔隙率0maxmaxcos14cos4bbddpp最大孔径可通过泡点法(bubblepointmethod)测量(4)水通量水通量定义水通量是指膜材料的纯水透过通量,其是在一定条件下(0.1MPa,温度为20℃)通过测量一定量纯水所需的时间测定。影响因素水通量随着膜截留分子量或膜孔径的增大而增大。膜材料的种类对水通量的影响显著。孔径越大,通量下降速度越快,大孔径微滤膜的稳定通量比小孔径膜小,有时甚至微滤膜的稳定通量比超滤膜还要小。4、各种膜组件平板式管式中空纤维螺旋卷绕式平板式膜组件