2006-2007高等数学BB卷试题+答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高等数学B试卷(B)试卷号:B020007一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分3小题,每小题4分,共12分)1、的值为,  极限)00()1(lim0baaxxbx()abeDeCabBAab)()(ln)(1)(.  . .仅有有限个间断点.有定义 .连续.有界   上,在上可导的充分条件是:,在、函数)()()()()(d)()(2DCBAbaxfbaxtfxFxaxxDxxCxBxAxfxxf11ln21)(11ln21)(arctan)(arcsin)()(,11)(32       的一个原函数为则、设二、填空题(将正确答案填在横线上)(本大题分2小题,每小题4分,共8分)1、xxd)3(32_______________.三、解答下列各题(本大题共2小题,每小题5分,总计10分)1、 ,处处连续.,当,当,当之值,使函数、确定000)(xbxxaxexfbax2、.],1[ln)(理的正确性上验证拉格朗日中值定在区间对函数exxf四、解答下列各题(本大题共5小题,每小题6分,总计30分)1、.计算022020)sin(tanlim2xxxdtttttdt_____________________________)()()()()(2badxxfxfabfbafxf则 ,,有连续的二阶导数,、若22、.计算:dxxx2sin2cos3、.dlnxxx求4、.求1021xxdx5、. 利用定积分计算极限:))()2(2)1(1(limnnnnnnnnn五、解答下列各题(本大题共4小题,每小题7分,总计28分)1、..验证设 xxyxxysin3sin3sin31sin332、yxyxyxyy求所确定由方程设,ln)(3、上的最值,在求函数31)2(322xxy4、求由平面图形y=xxsincos,y=0(40x)绕X轴旋转的旋转体体积。六、解答下列各题(本大题6分))为驻点,,使得点(中的试确定442,,,,23dcbadcxbxaxy(1,—10)为拐点。七、解答下列各题(本大题6分)若在,上连续,且,,证明:在,内至少存在一点,使.fxabfaafbbabf()()()()()3高等数学B试卷(B)(答案)注:各主观题答案中每步得分是标准得分,实际得分应按下式换算:第步实际得分本题实际得分解答第步标准得分解答总标准得分N=N一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分3小题,每小题4分,共12分)1、C答:2、B3、D二、填空题(将正确答案填在横线上)(本大题分2小题,每小题4分,共8分)1、279957357xxxxc.2、1222()ab三、解答下列各题(本大题共2小题,总计10分)1、(本小题5分)解:,,ffbfa()()()0010006分当时处处连续abfx1()10分2、(本小题5分)证明:在上连续在可导fxxee()ln[,],,,11即在上满足拉格朗日中值定理的条件fxe()[,]14分又,令fxxffefee()()()()111111得到内的解(,)11ee8分即存在使这就验证了拉格朗日中eeffefe1111(,)()()()值定理对函数在上的正确性fxxe()ln[,]110分四、解答下列各题(本大题共5小题,总计30分)1、(本小题6分))sin()2(tanlim2220xxxxxx原式4分4lim()(sin)xxxxxx022221403limsinxxxx6分1431341202022limcoslimxxxxxx32。10分2、(本小题6分)原式xdxsinsin2127分=Cx2sinarctan2210分3、(本小题6分)xxdxxdxln.ln()22xxxxdx22221ln5分xxxc2224ln.10分4、(本小题6分)解:dtttt20cossincos原式(txsin令)4分20)cossinsin1(dtttt202sinsincostttdt6分令,右式第二项tuIuuuduuuudu22002cossincos()cossincos8分224II ,,原式4。10分5、(本小题6分)原式lim(nnnnnnnnnn111121215xxdx1015分(ln()xx10112ln10分五、解答下列各题(本大题共4小题,每小题7分,总计28分)1、(本大题7分)yxxxxcossincoscos234分yxxxxyxx33333233cossinsinsinsinsin10分2、(本小题7分)lnyxyxyx1,)(,22xyxyyxyyxyy10分3、(本小题7分),,不可导点,,驻点 21)2(23)1(432xxxxxxy4分1)1(9)1(3yy  yy(),()20393   7分。上 ,故在0)2(;9)1()3(30min3maxyyyyy10分4、(本小题7分)解:dxxxV4022)sin(cos5分=210分六、解答下列各题(本大题共2小题,总计6分)解:),),(,曲线过点(101442,26,232baxycbxaxy,3分故有:1044248dcbadcba,5分又(-2,44)为驻点,(1,-10)为拐点,026)1(0412)2(baycbay,解方程得8分.16,24,3,1dcba10分6七、解答下列各题(本大题6分)证:引入辅助函数()()xfxx4分()()()xabafaa在,上连续,0()()bfbb08分所以至少有一点,,满足,即()()()abf010分

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功