考点14热学1.(2007·新课标全国卷·T30B)(15分)如图所示,两个可导热的气缸竖直放置,它们的底部由一细管连通(忽略细管的容积)。两气缸各有一活塞,质量分别为1m和2m,活塞与气缸壁无摩擦。活塞的下方为理想气体,上方为真空。当气体处于平衡状态时,两活塞位于同一高度h。(已知1m=3m,2m=2m)(1)在两活塞上同时各放一质量为m的物块,求气体再次达到平衡后两活塞的高度差(假定环境的温度始终保持为0T)。(2)在达到上一问的终态后,环境温度由0T缓慢上升到T,试问在这个过程中,气体对活塞做了多少功?气体是吸收还是放出了热量?(假定在气体状态变化过程中,两物块均不会碰到气缸顶部)【解析】⑴设左、右活塞的面积分别为A/和A,由于气体处于平衡状态,故两活塞对气体的压强相等,即:/32mgmgAA由此得:/32AA在两个活塞上各加一质量为m的物块后,右活塞降至气缸底部,所有气体都在左气缸中。在初态,气体的压强为2mgA,体积为52Ah;在末态,气体压强为83mgA,体积为32Ax(x为左活塞的高度)。由玻意耳-马略特定律得:4533mgmgAhAxAA解得:54xh即两活塞的高度差为54h⑵当温度由T0上升至T时,气体的压强始终为83mgA,设x/是温度达到T时左活塞的高度,由盖·吕萨克定律得:/0054TThxxTT活塞对气体做的功为:0054(1)5(1)4TTWFsmghmghTT在此过程中气体吸收热量【答案】⑴54h⑵05(1)TmghT吸收热量2.(2008·新课标全国卷·T31)(6分)⑴(6分)如图所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦,活塞上方存有少量液体.将一细管插入液体,由于虹吸现象,活塞上方液体逐渐流出.在此过程中,大气压强与外界的温度保持不变.关于这一过程,下列说法正确的是.(填入选项前的字母,有填错的不得分)A.气体分子的平均动能逐渐增大B.单位时间气体分子对活塞撞击的次数增多C.单位时间气体分子对活塞的冲量保持不变D.气体对外界做功等于气体从外界吸收的热量【解析】⑴本题考查了气体状态方程和热力学第一定律的综合应用,是一道考查热学知识综合应用的好题。由于气缸导热,环境温度不变,因此被封闭气体温度不变,分子平均动能不变,故A错误;温度不变,压强减小,根据PVCT(常数)可知,气体体积增大,温度不变,因此单位时间气体分子对活塞撞击的次数减小,故B错误;气体体积增大,分子平均动能不变,因此单位时间气体分子对活塞的冲量减小,故C错误;温度不变,内能不变,体积增大,对外做功,根据△U=W+Q,可知气体对外界做功等于气体从外界吸收的热量,故D正确。【答案】D⑵(9分)一定质量的理想气体被活塞封闭在可导热的气缸内,活塞相对于底部的高度为h,可沿气缸无摩擦地滑动.取一小盒沙子缓慢地倒在活塞的上表面上.沙子倒完时,活塞下降了h/4.再取相同质量的一小盒沙子缓慢地倒在活塞的上表面上.外界天气的压强和温度始终保持不变,求此次沙子倒完时活塞距气缸底部的高度.【解析】本题考查玻马定律,对气体作为研究对象,分第一次加小盒沙子和第二次加沙子两次列玻马定律方程求解。设大气和活塞对气体的总压强为p0,加一小盒沙子对气体产生的压强为p,由玻马定律得:001()()4phpphh①由①式得013pp②再加一小盒沙子后,气体的压强变为p0+2p.设第二次加沙子后,活塞的高度为h′,由玻马定律得:00(2)phpph′③联立②③式解得35hh④h【答案】35hh3.(2009·新课标全国卷·T34)(15分)(1)(5分)带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a,然后经过过程ab到达状态b或进过过程ac到状态c,b、c状态温度相同,如V-T图所示。设气体在状态b和状态c的压强分别为Pb、和PC,在过程ab和ac中吸收的热量分别为Qab和Qac,则(填入选项前的字母,有填错的不得分)A.PbPc,QabQacB.PbPc,QabQacC.PbPc,QabQacD.PbPc,QabQac(2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S的容器组成。左容器足够高,上端敞开,右容器上端由导热材料封闭。两个容器的下端由可忽略容积的细管连通。容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1p0。系统平衡时,各气体柱的高度如图所示。现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求(i)第二次平衡时氮气的体积;(ii)水的温度。【解析】(1)(5分)本题考查理想气体状态方程。本题可根据理想气体状态方程,整理后可得V-T图象,判断斜率的意义,得到压强的变化,再根据热力学第一定律判断做功和吸热。根据理想气体状态方程PVCT整理可得:CTVP所以斜率越大,压强越小,即b点的压强小于c点,故AB错误;CD中、由热力学第一定律△U=W+Q,经过过程ab到达状态b或经过过程ac到状态c,b、c状态温度相同,所以△U相等,又因经过过程ab到达状态b,体积增大,对外做功,W为负值,而经过过程ac到状态c,体积不变,对外不做功,W为零,所以第一个过程吸收的热量多,故C正确,D错误。(2)(10分)(i)考虑氢气的等温过程。该过程的初态压强为op,体积为hS,末态体积为0.8hS。设末态的压强为P,由玻意耳定律得1.250.8oophspphS①活塞A从最高点被推回第一次平衡时位置的过程是等温过程。该过程的初态压强为1.1op,体积为V;末态的压强为'P,体积为'V,则'0.11.35oopppp②'2.2VhS③由玻意耳定律得1.352.22.71.1oopVhShSp④(ii)活塞A从最初位置升到最高点的过程为等压过程。该过程的初态体积和温度分别为2hS和0273TK,末态体积为2.7hS。设末态温度为T,由盖-吕萨克定律得02.7368.552hSTTKhS⑤【答案】⑴C⑵(i)2.7hS(ii)368.55K5.(2011·新课标全国卷·T33(1))(6分)对于一定量的理想气体,下列说法正确的是______。(选对一个给3分,选对两个给4分,选对3个给6分。每选错一个扣3分,最低得分为0分)()A.若气体的压强和体积都不变,其内能也一定不变B.若气体的内能不变,其状态也一定不变C.若气体的温度随时间不段升高,其压强也一定不断增大D.气体温度每升高1K所吸收的热量与气体经历的过程有关E当气体温度升高时,气体的内能一定增大【解析】解答本题时可按以下思路分析:对一定质量的理想气体,遵循理想气体状态方程,其内能仅由温度决定,比热容与状态变化的过程有关系,例如在等容变化或等压变化时其比热容不同,从这几个方面可解答所求。对一定质量的理想气体,有pVT=常量,当体积和压强不变时,温度也不变,而其内能仅由温度决定,故其内能不变,因此A正确。在等温时,理想气体内能不变,但其状态可以变化,并遵循玻意耳定律,故B错。由于pVT=常量,当V与T成正比时,p不变,故C错。对气体,在等压和等容情况下,比热容不同,因此D正确。由于理想气体的内能仅由温度决定,温度升高,内能增大,故E正确。【答案】ADE6.(2011·新课标理综全国卷·T33(2))(9分)如图,一上端开口,下端封闭的细长玻璃管,下部有长l1=66cm的水银柱,中间封有长l2=6.6cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐。已知大气压强为Po=76cmHg。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。【解析】解答本题时可选取封闭气体为研究对象,注意玻璃管转动过程中开口向上、向下两位置封闭气体压强的求解,并在这两个位置应用玻意耳定律列出方程。设玻璃管开中向上时,空气柱的压强为p1=p0+ρgl3①式中,ρ和g分别表示水银的密度和重力加速度。玻璃管开口向下时,原来上部的水银有一部分会流出,封闭端会有部分真空。设此时开口端剩下的水银柱长度为x,则p2=ρgl1,p0=P2+ρgx②式中,p2为管内空气柱的压强。由玻意耳定律有p1l2S=p2hS③式中,h是此时空气柱的长度,S为玻璃管的横截面积,由①②③式和题给条件得h=12cm从开始转动一周后,设空气柱的压强为p3,则p3=p0+ρgx④由一玻意耳定律得p1l2S=p3h′S⑤式中,h′是此时空气柱的长度,由①②③⑤⑥式得,h′=9.2cm【答案】:12cm9.2cm7.(2012·新课标全国卷·T33(1))(6分)关于热力学定律,下列说法正确的是_________A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的实际宏观过程是不可逆过程【解析】熟练掌握热力学第一定律和热力学第二定律是解答本题的关键。做功和热传递都可以改变物体的内能,选项A正确;由热力学第一定律可知对某物体做功,物体的内能可能增加、不变或减小,故B错;由热力学第二定律可知,通过外界作用可以从单一热源吸收热量,使之完全变为功,可以使热量从低温物体传向高温物体,C正确,D错误.所有的实际宏观热过程都是不可逆,E正确.【答案】ACE(2).(2012·新课标全国卷·T33(2))(9分)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0°C的水槽中,B的容积是A的3倍.阀门S将A和B两部分隔开.A内为真空,B和C内都充有气体.U形管内左边水银柱比右边的低60mm.打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等.假设U形管和细管中的气体体积远小于玻璃泡的容积.(i)求玻璃泡C中气体的压强(以mmHg为单位)(ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温.【解析】解答本题应明确:打开阀门S,气体做等温变化,平衡后A、B中气体压强等于C中气体压强;加热右侧水槽,C中气体做等容变化。(ⅰ)在打开阀门S前,两水槽水温均为T0=273K.设玻璃泡B中气体压强为p1,体积为VB,玻璃泡C中气体压强为pC,依题意有p1=pC+△p①式中△p=60mmHg.在打开阀门S后,两水槽水温均为T0.设最终玻璃泡B中气体压强为pB,依题意,有pB=pC②玻璃泡A和B中气体的体积为V2=VA+VB③根据玻意耳定律得p1VB=pBV2④联立①②③④式,并代入题给数据得180BCAVPpmmHgV⑤(ⅱ)当右侧水槽的水温加热至T′时,U形管左右水银柱高度差为△p.玻璃泡C中气体压强为p′C=pB+△p⑥玻璃泡C的气体体积不变,根据查理定律得//0CCPPTT⑦联立②⑤⑥⑦式,并代入题给数据得T′=364K⑧【答案】(ⅰ)180mmHg(ⅱ)364K8、(2013·新课标全国卷Ⅰ·T33)(15分)(1)(6分)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近。在此过程中,下列说法正确的是(填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每选错1个扣3分,最低得分为0分)A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变(2)(9分)如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0气缸中各有一个绝热活塞(质量不同,厚度可忽略)。开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为Po和Po/