06级概率论与数理统计期末试题答案(2007.12.16)一、填空题:(每题4分,共16分)1.解答:2815。2.解答:2。3.解答:34。4.解答:31。二、选择题:(每题4分,共16分)1.解答:C。2.解答:D。3.解答:A。4.解答:C。三、计算题:(每题8分,共24分)1.解答:(1)121)()()(ABPAPABP;(2)61)()()(BAPABPBP,1()()()74()1()11151()10()6PABPAPABPABPABPBPB,或10765411)(1)()(1)(1)()()(1)()()(BPABPAPBPABPBPAPBPBAPBAP。2.解答:(1){200}PX12006003011600xedxe;(2)解法一:设Y为3个元件在最初200小时损坏的个数,则13~(3,1)YBe,3113{1}1{0}11PYPYee。解法二:把三只元件编号为3,2,1,并引进事件:只元件损坏小时内,第在仪器使用的最初kAk200,3,2,1,kkXk只元件的使用寿命第由题设知3,2,1kXk服从密度为)(xf的指数分布,由312006006001200edxeXPAPxkk,知所求事件的概率13313213213211111eeAAAPAAAPAAAP。3.解答:(1)220{12}1xPXedxe;(2)解法一:Y的分布函数为yePyYPyFXY)()(当1y时,0)(yFY;当1y时,yxYdxeyXPyFln0)ln()(;因此的概率密度21,1()()0,1YYydyfyFydyy。解法二:(ln)(ln),0()0,0XYfyyyfyy(ln)1,10,1yeyyy21,10,1yyy。四、计算题:(每题9分,共27分)1.解答:(1)由于(,)1fxydxdy,即12001xdxAdyA,所以1A。(2)()Xfx=(,)fxydy201,010,xdyx其他2,010,xx其他;(3)当01x时:(,)()()YXXfxyfyxfx1,01,02,20,xyxx其他2.解答:(1)12()(),(Z)()EZabEab,22222212()(),(Z)()DZabDab;(2)12ov(,)(,)CZZCovaXbYaXbY22(,)(,)(,)(,)aCovXXabCovXYabCovYXbCovYY22222()()()aDXbDYab12,ZZ的相关系数22122212ov(,)()()CZZababDZDZ;(3)设12(,)ZZZ,由于12,ZZ相互独立,故12()()()ZZZfzfzfz因为1()()EZab,2221()()DZab,所以22221[()]2()221()2()zababZfzeab,同理:2(Z)()Eab,2222(Z)()Dab,22222[()]2()221()2()zababZfzeab故:12()()()ZZZfzfzfz=22222222222222[()][()]()2()2()()22222221112()2()2()zabzabzababababeeeababab。3.解答:(1)101()(1)2aaEXxfxdxxaxdxa,111niiAXXn,令12aa=X,则21ˆ1XaX;(2)1212()()()()nXXXnLafxfxfx1201(1)(),,0,nainxaxxx其它当01ix时:12ln(())ln(1)ln()nLanaaxxx,12ln(())ln()01ndLanxxxdaa,因此12ˆ1ln()nnaxxx。五、应用题:(10分)解答:设A表示选中正确答案,B表示会解这道题,(1)131()()()()()0.710.30.775440PAPBPABPBPAB;(2)()()()28()0.903()()31PBPABPABPBAPAPA。六、证明题:(7分)证明:依题意),(~2NXi,则),(~2nNXn,由于nX与1nX独立,则))11(,0(~21nNXXnn,又由于)1(~)1(222nSnn,则有)1(~)1()1()11(221ntnSnnXXnnn,即)1(~11ntnnSXXUnnn。