2007优秀的数学建模论文-中国人口增长模型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中国人口增长模型摘要人口问题涉及人口质量和人口结构等因素,是一个复杂的系统工程,稳定的人口发展直接关系到我国社会、经济的可持续发展。如何从数量上准确的预测人口数量以及各种人口指标,对我国制定与社会经济发展协调的健康人口发展计划有着决定性的意义。近年来我国的人口发展出现了许多新的特点,这些都影响着我国人口的增长。鉴此,本文依据灰色预测方法和年龄移算理论,基于人口普查统计数据,从人口系统发展机理上展开讨论。首先根据灰色预测理论,建立了一级的灰色预测模型,再将近几年我国的人口数量带入模型,便得到未来较短时间内我国的人口数量。所得结果为我国总人口将于2006年、2007,2008,2009,2010年分别达到13.1495,13.2212,13.2909,13.3587,13.4246亿人。然后分析人口发展方程中按年龄死亡率及生育模式等参数函数的内在变化规律,及其对总人口的影响,建立了莱斯利主模型,并在此基础上针对各参数函数的不同特点,建立了生育模型和死亡模型等子模型。在将所得子模型和主模型结合,依据当前人口结构现状对我国的人口做了长期的预测。所得结果是我国总人口将于2010年、2020年、2030年分别达到13.51058,14.38295,14.78661亿人与国家发展战略报告数据一致。最后对所建模型的优缺点进行了客观的评价。关键词:灰色预测模型,改进的莱斯利模型,老龄化指数,平均寿命,平均年龄。一、问题的提出1.1问题:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。1.2背景分析:中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。二、问题分析2.1整体分析人口增长模型是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响和制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,他们对人口增长的潜在而复杂的影响更是无法精确计算。这反映出人口系统具有明显的灰色性,适宜采用灰色模型去发掘和认识原始时间序列综合灰色量所包含的内在规律。灰色预测模型属于全因素的非线性拟合外推类法,其特点是单数列预测,在形式上只用被预测对象的自身序列建立模型,根据其自身数列本身的特性进行建模、预测,与其相关的因素并没有直接参与,而是将众多直接的明显的和间接的隐藏着的、已知的、未知的因素包含在其中,看成是灰色信息即灰色量,对灰色量进行预测,不必拼凑数据不准、关系不清、变化不明的参数,而是从自身的序列中寻找信息建立模型,发现和认识内在规律进行预测。基于以上思想我们建立了灰色预测模型。2.2局部分析在灰色预测模型中,与起相关的因素并没有直接参与,但如果考虑到直接影响人口增长的因素,例如出生率、死亡率、迁入迁出人口数等,根据具体的数据进行计算,则可以根据年龄移算理论,从某一时点的某年龄组人数推算一年或多年后年龄相应增长一岁或增长多岁的人口数。在这个人口数的基础上减去相应年龄的死亡人数,就可以得到未来某年龄组的实际人口数。对于0岁的新生人口,则需要通过生育率作重新计算。当社会经济条件变化不大时,各年龄组死亡率比较稳定,相应活到下一年龄组的比例即存活率也基本上稳定不变。因而可以根据现有的分性别年龄组存活率推算未来各相应年龄组的人数。即,若某t年年初有i岁人口数txi人,次年即(t+1)年年初这些人长了一岁为(r+1)岁。若tdi为这批人在一年内的死亡率,则(t+1)年年初(i+1)岁的人口数为tdtxii1。0岁人口数需要通过妇女生育情况另行计算。因此可以建立人口发展矩阵方程模型这一主模型,并在其基础上建立生育率模型和死亡率模型。三、模型假设1.假设附件中所给数据真实可靠且具有预测性。2.不考虑国内外的人口迁移对我国人口的影响。3.不考虑香港、台湾以及澳门人口。4.假设影响中国总人口数的主要因素是死亡率和出生率。5.假设在社会稳定的前提下,生育和死亡率都比较稳定。6.由国家人口发展战略研究报告知,我国总和生育率从20世纪70年代初的5.8下降到目前的1.8,低于更替水平。假设在未来的发展进程中,我国妇女的总和生育率保持为1.8。四、名词解释1.人口:生活在一定社会生产方式、一定时期、一定地域,实现其生命活动并构成社会生活主体,具有一定数量和质量的人所组成的社会群体。2.出生率:指某年每1000人对应的活产数,又称总出生率或粗出生率。它反映人口的出生水平,一般以千分数表示。3.生育率:某年每1000名15-49岁妇女的活产婴儿数。又称一般生育率。该指标比出生率要精确一些,因为它将同可能生育的特定性别年龄的人口联系起来(通常是15-49岁的妇女),排除了年龄性别结构不同引起的偏差。生育率比出生率更能揭示生育水平的变化。4.总和生育率:指假定妇女按照某一年的年龄别生育率度过育龄期,平均每个妇女在育龄期生育的孩子数5.死亡率:一定时期内(通常为一年)死亡人数与同期平均人数(或期中人数)之比。说明该时期人口的死亡强度,通常用千分比表示。6.人口增长率:人口增长程度或增长速度,即一定时期内人口增长数与人口总数之比。通常以一年为期计算,用百分数表示。7.人口年龄结构:某一年某一地区按年龄划分的人口数。8.老龄化指数:65岁以上人口对15岁以下人口的比例,数值越高说明老龄化程度越深。9.平均寿命:0岁时的期望寿命,用以反映同时出生的一群人预期可能存活的岁数。10.灰生成:将原来数据通过某种运算交换为新数据,成为灰生成,新数据称为变换数据。11.累加生成:将同一序列中数据逐次相加以生成新的数据。五、模型的建立模型一灰色预测模型灰色系统是指既含有已知信息、又含有未知信息或非确知信息的系统,也称为贫信息系统。灰色模型是根据关联度、生成数灰导数、灰微分等观点和一系列数学方法建立起来的连续性的微分方程。灰色预测是灰色系统理论的一个重要方面,它利用这些信息,建立灰色预测模型,从而确定系统未来的变化趋势。灰色预测模型能够根据现有的少量信息进行计算和推测。灰色建模的思路是:从序列角度剖析微分方程,是了解其构成的主要条件,然后对近似满足这些条件的序列建立近似的微分方程模型。而对序列而言(一般指有限序列)只能获得有限差异信息,因此,用序列建立微分方程模型,实质上是用有限差异信息建立一个无限差异信息模型。设原始序列为},,2,1{0000nxxxx这是一组信息不完全的灰色量,具有很大的随机性,将其进行生成处理,以提供更多的有用信息。下面选用累加生成,则m次累加生成的结果为},,2,1{nxxxxmmmm式中kimmixkx11(k=1,2,…,n)一般通过一次累加生成就能使数据呈现一定的规律,若规律不够,可增加累加生成的次数。同理一次累加序列为},2,1{1111nxxxx在数据生成的基础上,用线性动态模型对生成数据拟合和逼近。对1x建立模型bkazkx10其白化形式微分方程为taxtdtdx11记参序列Tbaa][,再按最小二乘法进行求解。其向量形式为NTTTBBBbaa1][其中kxkxkz001121;1]1[5.01]32[5.01]21[5.0111111nxnxxxxxB;TNnxxx]32[000;白化形式微分方程的离散解为aeaxkxak]1[1ˆ01(k=0,1,2,…,n-1)按txtxtxmmmˆ1ˆ1ˆ1累减生成还原,计算后得到预测数据。显然这里只需一次累减。利用1999年-2005年的中国人口数据,然后根据最小二乘法原理运用Matlab软件编程(程序见附录)对参数求解可以得到:0281.0a,0888.0,初始序列的第一个元素为0.0975。因此可得白化形式微分方程的离散解为0281.00888.00281.00888.00975.01ˆ0281.01kekx即1601.30626.31ˆ02881.01kekx通过上述GM(1,1)模型的建模过程可知,模型的解是一个指数函数,实际上对于任意非负离散点序列,其一次累加序列呈现指数规律,因此,用指数函数来拟合是可以的。模型二模型组下面以人口发展矩阵方程为主模型,并在此基础上进一不建立生育模型和死亡模型的子模型。主模型:改进的莱斯利模型以年为组划分年龄组,令最长寿命为m,设第t年满i足岁不到i+1足岁的人数为txi,t=0,1,2…,i=0,1,2,…,m.其中txi表示符合条件的全部人口。记tdi为第t年i年龄组的死亡率,因此有txtdtxiii111,i=0,1,2,…,m-1,t=0,1,2….(式一)令tbi为i组妇女在t年的生育率,],[21ii为妇女的育龄期,tki为i组中t年时的女性的人口比率,则第t年出生的人口为txtktbtpiiiiii211.(式二)设td00为第t年的婴儿的死亡率,有tptdtx10001.(式三)由式一和式三,易得txtktbtdtdtxiiiiii210001111.(式四)将tbi分解为thttbii,(式五)其中thi是生育模式,成立121thiiii,而tbtiiii21(式六)表示第t年每一个育龄妇女平均生育婴儿数.令tkthtdtdtbiii00011,(式七)将式五带入式二,则式四可改写为txtbttxiiiii2111.(式八)分别令TmtxtxtxtX,,,21,0100001000010000121tdtdtdtAm,(式九)000000000000000021tbtbtBii.(式十)那么有tXtBttXtAtX1.(式十一)在社会稳定的前提下,生育率和死亡率都比较稳定,从而可以视A(t),B(

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功