12007高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题:中国人口增长预测中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的《国家人口发展战略研究报告》(附录1)还做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从《中国人口统计年鉴》上收集到的部分数据。试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。附录1《国家人口发展战略研究报告》附录2人口数据(《中国人口统计年鉴》中的部分数据)及其说明22007高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)B题:乘公交,看奥运我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路线(要有清晰的评价说明)。(1)、S3359→S1828(2)、S1557→S0481(3)、S0971→S0485(4)、S0008→S0073(5)、S0148→S0485(6)、S0087→S36762、同时考虑公汽与地铁线路,解决以上问题。3、假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。【附录1】基本参数设定相邻公汽站平均行驶时间(包括停站时间):3分钟相邻地铁站平均行驶时间(包括停站时间):2.5分钟公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:0~20站:1元;21~40站:2元;40站以上:3元地铁票价:3元(无论地铁线路间是否换乘)注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合。【附录2】公交线路及相关信息(见数据文件B2007data.rar)32008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题数码相机定位数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,如图1所示,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。图1靶标上圆的像有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示。4图2靶标示意图用一位置固定的数码相机摄得其像,如图3所示。图3靶标的像请你们:(1)建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标,这里坐标系原点取在该相机的光学中心,x-y平面平行于像平面;(2)对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标,该相机的像距(即光学中心到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单位),相机分辨率为1024×768;(3)设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。52008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题高等教育学费标准探讨高等教育事关高素质人才培养、国家创新能力增强、和谐社会建设的大局,因此受到党和政府及社会各方面的高度重视和广泛关注。培养质量是高等教育的一个核心指标,不同的学科、专业在设定不同的培养目标后,其质量需要有相应的经费保障。高等教育属于非义务教育,其经费在世界各国都由政府财政拨款、学校自筹、社会捐赠和学费收入等几部分组成。对适合接受高等教育的经济困难的学生,一般可通过贷款和学费减、免、补等方式获得资助,品学兼优者还能享受政府、学校、企业等给予的奖学金。学费问题涉及到每一个大学生及其家庭,是一个敏感而又复杂的问题:过高的学费会使很多学生无力支付,过低的学费又使学校财力不足而无法保证质量。学费问题近来在各种媒体上引起了热烈的讨论。请你们根据中国国情,收集诸如国家生均拨款、培养费用、家庭收入等相关数据,并据此通过数学建模的方法,就几类学校或专业的学费标准进行定量分析,得出明确、有说服力的结论。数据的收集和分析是你们建模分析的基础和重要组成部分。你们的论文必须观点鲜明、分析有据、结论明确。最后,根据你们建模分析的结果,给有关部门写一份报告,提出具体建议。2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题眼科病床的合理安排医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等6待住院等,往往需要排队等待接受某种服务。我们考虑某医院眼科病床的合理安排的数学建模问题。该医院眼科门诊每天开放,住院部共有病床79张。该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。做两只眼的病人比做一只眼的要多一些,大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。当前该住院部对全体非急症病人是按照FCFS(Firstcome,Firstserve)规则安排住院,但等待住院病人队列却越来越长,医院方面希望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用。问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣。问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。并对你们的模型利用问题一中的指标体系作出评价。问题三:作为病人,自然希望尽早知道自己大约何时能住院。能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应作出相应调整?7问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题2010年上海世博会影响力的定量评估2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万8国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样、编号,并用GPS记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土