得分亲爱的同学,请你仔细审题,细心答题,相信你一定会有出色的表现.本学科试题共三道大题,28道小题,满分100分,考试时量120分钟.一、选择题(每小题2分,共20分)1.北京2008年第29届奥运会火炬接力活动历时130天,传递总里程13.7万千米,传递总里程用科学记数法表示为()(A)1.37×105千米(B)1.37×104千米(C)1.37×103千米(D)1.37×102千米2.下列运算中,结果正确的是()(A)844aaa(B)523aaa(C)428aaa(D)63262aa3.不等式53x<x3的正整数解有()(A)1个(B)2个(C)3个(D)4个4.方程04142xxx的解是()(A)3x(B)3x(C)4x(D)3x或4x5.如图1,是张老师晚上出门散步时离家的距离y与时间x之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()6.如图2,AB//CD,1051,EEAB则,65的度数是()(A)30(B)40(C)50(D)60得分评卷人复评人.如图3,是小玲在5月11日“母亲节”送给她妈妈的礼盒,图中所示礼盒的主视图是()8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()9.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为()(A)43(B)32(C)21(D)4110.设反比例函数)0(kxky中,y随x的增大而增大,则一次函数kkxy的图象不经过()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题(每小题2分,共20分)11.分解因式:2282ba.12.方程组3,5yxyx的解是___.13.已知数据2,3,4,5,6,x的平均数是4,则x的值是.14.如图4,直线ba、被直线c所截,若ba//,1201,则2的度数等于.15.如图5,△ABC内接于⊙O,点P是CA上任意一点(不与CA、重合),POCABC则,55的取值范围是.得分评卷人复评人.已知△ABC中,90C,3cosB=2,AC=52,则AB=.17.师生做游戏,杨老师要随机将2名男生和2名女生排队,两名女生排在一起的概率是.18.如图6,在平行四边形ABCD中,DB=DC、65A,CEBD于E,则BCE.19.某厂接到为汶川地震灾区赶制无底帐篷的任务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水隔热的环保面料(拼接处面料不计)m2.(参考数据:52.2π3.1,)20.某市出租车公司收费标准如图8所示,如果小明乘此出租车最远能到达13千米处,那末他最多只有元钱.三.解答题(本大题8个小题,满分60分)21.(本题满分7分)先化简,再求值:3211123xxxxx,其中.22.(本题满分7分)袋中装有红、黄、绿三种颜色的球若干个,每个球只有颜色不同.现从中任意摸出一个球,得到红球的概率为31,得到黄球的概率为21.已知绿球有3个,问袋中原有红球、黄球各多少个?得分评卷人复评人.(本题满分7分)如图9,已知正比例函数xy与反比例函数xy1的图象交于BA、两点.(1)求出BA、两点的坐标;(2)根据图象求使正比例函数值大于反比例函数值的x的范围;24.(本题满分7分)如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)CGAE;(2).MNCNDNAN25.(本题满分7分)如图11,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若15BEC,求AC的长.26.(本题满分7分)某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示,ADBC//,斜坡AB长m10625,坡度5:9i.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,新课标第一网地质人员勘测,当坡角不超过45时,可确保山体不滑坡.(1)求改造前坡B到地面的垂直距离BE的长;(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F处,问BF至少是多少米?27.(本题满分8分)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.28.(本题满分10分)如图13,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于8006AB,、,两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得ABCPDESS101?若存在,请求出点P的坐标;若不存在,请说明理由.年怀化市初中毕业学业考试试卷参考答案及评分标准数学一、选择题(每小题2分,共20分)二、填空题(每小题2分,共20分)三、解答题21.解:23123111212xxxxxxxxxx···························2分22232212112xxxxxxxxxx12x········································································································5分21323423x当时,原式的值为··························································7分22.解:摸到绿球的概率为:6121311·····················································1分则袋中原有三种球共18613(个)·····························································3分题号12345678910答案ABCBDBADAB题号11121314151617181920答案222abab41xy41200<∠POC<1106122520367016(个)····························································5分袋中原有黄球91821(个)··································································7分23.解:(1)解方程组xyxy1,得,11,112211yxyx············2分所以A、B两点的坐标分别为:A(1,1)、B(-1,-1)······4分(2)根据图象知,当01x或1x时,正比例函数值大于反比例函数值····································································7分24.证明:(1)四边形ABCD和四边形DEFG都是正方形,,90,ADCDDEDGADCEDG,ADECDGADECDG△≌△,···················3分AECG··························································4分(2)由(1)得,又CNDANMDCGDAECDGADE,,ANMNANDNCNMNCNDN,即············································7分∴AMN∽CDN················································································6分25.解:(1)由平移的性质得//3EFABAFABCAFBCAFBCEFAABCAFBCSSS且,△≌△,四边形为平行四边形,,9EFBC四边形的面积为.··········································································3分(2)AFBE.证明如下:由(1)知四边形AFBC为平行四边形////BFACBFACAECABFAEBFAEEFBAABACABAE且,又,且,四边形为平行四边形又已知,,EFBABEAF平行四边形为菱形,·························································5分新课标第一网分为正数且则设中在,,,,于作7......................32,3,,3,22121,3,2,.2,,3021515)3(22ACxxxxxxBDACSSxABACxBDBDABBADRtBECBACBECEBAABAEBECDACBDABCABC222222926.:1955590106.....................................2255510695922.5.22222.5....................BEiBEkAEkkAERtABEBEAABABBEAEkkkBEmBE解,设,为正数,则在中,,,,分即,解得,故改造前坡顶与地面的距离的长为米................................................42112.5,,,tan,22.5tan45,10.12.510,...........................................................FHAEBFxmFHADHFAHAHxxBBCm分由得设作于则由题意得即坡顶沿至少削进才能确保安全..............7分27.解:(1)因为租用甲种汽车为x辆,则租用乙种汽车x8辆.由题意,得42830,38820.xxxx≥≥································································2分解之,得.5447x················································································3