2008年福建数学中考考试大纲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12008年福建省初中毕业生学业考试大纲(数学)一、命题依据教育部制订的《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)。二、命题原则⒈体现数学课程标准的评价理念,有利于促进数学教学,全面落实《数学课程标准》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学校综合有效评价学生数学学习状况。⒉重视对学生学习数学“双基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价。⒊体现义务教育的性质,命题应面向全体学生,关注每个学生的发展。⒋试题的考查内容、素材选取、试卷形式对每个学生而言要体现其公平性。制定科学合理的参考答案与评分标准,尊重不同的解答方式和表现形式。⒌试题背景具有现实性。试题背景应来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实。⒍试卷的有效性。关注学生学习数学结果与过程的考查,加强对学生思维水平与思维特征的考查。中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致。试题的求解思考过程力求体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。三、适用范围适用于参加2008年初中毕业生学业考试的学生。2四、考试范围教育部颁发的全日制义务教育数学课程标准(7—9年级)中:数与代数、空间与图形、统计与概率、课题学习四个部分的内容。五、内容和目标要求⒈初中毕业生数学学业考试的主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等。⑴基础知识与基本技能考查的主要内容了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率。⑵“数学活动过程”考查的主要方面数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。⑶“数学思考”方面的考查应当关注的主要内容学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象来表达问题、借助直观进行思考与推理;能意识到作一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能合乎逻辑地与他人交流等等。3⑷“解决问题能力”考查的主要方面:能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略。⑸“对数学的基本认识”考查的主要方面:对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);对数学与现实、或其他学科知识之间联系的认识等等。⒉依据数学课程标准,考试要求的知识技能目标分为四个不同层次:了解(认识);理解;掌握;灵活运用。具体涵义如下:了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。理解:能描述对象的特征和由来;能明确阐述此对象与有关对象之间的区别和联系。掌握:能在理解的基础上,把对象运用到新的情境中。灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。数学活动水平的过程性目标分为三个不同层次:经历(感受);体验(体会);探索。具体涵义如下:经历(感受):在特定的数学活动中,获得一些初步的经验。体验(体会):参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其它对象的区别和联系。以下对《数学课程标准》中,数与代数、空间与图形、统计与概率、课题学习四个领域的具体考试内容与要求分述如下:数与代数(一)数与式⒈有理数考试内容:4有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算。考试要求:(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主)。(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题。⒉实数考试内容:无理数,实数,平方根,算术平方根,立方根,近似数和有效数字,二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算。考试要求:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根。(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。(4)能用有理数估计一个无理数的大致范围。(5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化)。⒊代数式考试内容:代数式,代数式的值,合并同类项,去括号。考试要求:(1)理解用字母表示数的意义。5(2)能分析简单问题的数量关系,并用代数式表示。(3)能解析一些简单代数式的实际背景或几何意义。(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并。⒋整式与分式考试内容:整式,整式的加减法,整式乘除,整数指数幂,科学记数法。乘法公式:22222()();()2ababababaabb。因式分解,提公因式法,公式法。分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算。考试要求:(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。(2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。(3)会推导乘法公式:22()()ababab;222()2abaabb,了解公式的几何背景,并能进行简单计算。(4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数)。(5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。(二)方程与不等式⒈方程与方程组考试内容:方程和方程的解,一元一次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个)。考试要求:(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的6一个有效的数学模型。(2)会用观察、画图或计算器等手段估计方程的解。(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。(5)能根据具体问题的实际意义,检验方程的解的合理性。⒉不等式与不等式组考试内容:不等式,不等式的基本性质,不等式的解集,一元一次不等式及其解法,一元一次不等式组及其解法。考试要求:(1)能够根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质。(2)会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。(3)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。(三)函数⒈函数考试内容:平面直角坐标系,常量,变量,函数及其表示法。考试要求:(1)会从具体问题中寻找数量关系和变化规律。(2)了解常量、变量、函数的意义,了解函数的三种表示方法,会用描点法画出函数的图象,能举出函数的实际例子。(3)能结合图象对简单实际问题中的函数关系进行分析。(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。7(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系。(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。⒉一次函数考试内容:一次函数,一次函数的图象和性质,二元一次方程组的近似解。考试要求:(1)理解正比例函数、一次函数的意义,会根据已知条件确定一次函数表达式。(2)会画一次函数的图象,根据一次函数的图象和解析式(0)ykxbk,理解其性质(k>0或k<0时图象的变化情况)。(3)能根据一次函数的图象求二元一次方程组的近似解。(4)能用一次函数解决实际问题。⒊反比例函数考试内容:反比例函数及其图象。考试要求:(1)理解反比例函数的意义,能根据已知条件确定反比例函数的表达式。(2)能画出反比例函数的图象,根据图象和解析式(0)kykx理解其性质k>0或k<0时图象的变化情况)。(3)能用反比例函数解决某些实际问题。⒋二次函数考试内容:二次函数及其图象,一元二次方程的近似解。考试要求:(1)理解二次函数和抛物线的有关概念,能对实际问题情境的分析确定二次函数的表达式。(2)会用描点法画出二次函数的图象,能结合图象认识二次函数的性质。(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求推导和记忆),并能解决简单的实际问题。(4)会利用二次函数的图象求一元二次方程的近似解。8空间与图形(一)图形的认识⒈点、线、面,角。考试内容:点、线、面、角、角平分线及其性质。考试要求:(1)在实际背景中认识,理解点、线、面、角的概念。(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。(3)掌握角平分线性质定理及逆定理。⒉相交线与平行线考试内容:补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。考试要求:(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。(3)知道过一点有且仅有一条直线垂直于已知直线。(4)掌握线段垂直平分线性质定理及逆定理。(5)了解平行线的概念及平行线基本性质,(6)掌握两直线平行的判定及性质。(7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。(8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。⒊三角形考试内容:三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质。直角三角形的性9质及判定。勾股定理。勾股定理的逆定理。考试要求:(1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。(2)掌握三角形中位线定理。(3)了解全等三角形的概念,掌握两个三角形全等的判定定理。(4)了解等腰三角形、直角三角形、等边三角形的有关概念

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功