2009年中考数学二轮复习强化练习专题六图形的认识(3)四边形一、选择题(每小题3分,共24分)1.在下列命题中,正确的是()(A)一组对边平行的四边形是平行四边形.(B)有一个角是直角的四边形是矩形.(C)有一组邻边相等的平行四边形是菱形.(D)对角线互相垂直平分的四边形是正方形.2.如图,在周长为20cm的□ABCD中,AB<AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()(A)4cm.(B)6cm.(C)8cm.(D)10cm.(第2题)(第3题)(第4题)3.如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()(A)43.(B)33.(C)42.(D)8.4.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()(A)3对.(B)4对.(C)5对.(D)6对.5.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,则梯形中位线的长等于()(A)7.5cm.(B)7cm.(C)6.5cm.(D)6cm.6.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x,y应分别为()(A)10x,14y.(B)14x,10y.(C)12x,15y.(D)15x,12y.(第6题)(第7题)(第8题)7.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较大直角边为a,较短直角边为b,则34ab的值为()(A)35.(B)43.(C)89.(D)97.8.如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B、C、D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是()(A)0.(B)1.(C)2.(D)3.二、填空题(每小题3分,共18分)9.阳光广告公司为某种商品设计的商标图案如图所示,图中阴影部分为红色.若每个小长方形的面积都1,则红色的面积是___.(第9题)(第10题)(第11题)10.如图,梯形纸片ABCD,已知AB∥CD,AD=BC,AB=6,CD=3.将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,则∠B=____________.11.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是____________.12.在等腰梯形ABCD中,AD∥BC,如果AD=4,BC=8,∠B=60o,那么这个等腰梯形的周长等于_____________.13.现有一张长为40cm,宽为20cm的长方形纸片,要从中剪出长为18cm,宽为12cm的长方形纸片,则最多能剪出____________张.14.在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图所示),看不清所印的字,请问被墨迹遮盖了文字应是______________.(第14题)三、解答题(每小题5分,共20分)15.如图,在□ABCD中,∠BAD的平分线交BC边于点E.求证:BE=CD.16.如图,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60o),菱形ABCD的边长为2,E是AD的中点,沿CE将菱形ABCD剪成①、②两部分,用这两部分分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上,在下面的菱形斜网格中画出示意图.(直角三角形)(等腰梯形)(矩形)17.如图,在梯形ABCD中,AB∥CD,AD⊥AB,∠B=45o,延长CD到点E,使DE=DA,连接AE.(1)求证:AE∥BC;(2)若AB=3,CD=1,求四边形ABCE的面积.18.如图,在梯形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAD的平分线AE交BC于E,F,G分别是AB,AD的中点.(1)求证:EF=EG;ABCDE(2)当AB与EC满足怎样的数量关系时,EG∥CD?并说明理由.四、解答题(每小题6分,共24分)19.如图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE=BF.请你以F为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).20.如图,矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角形的直角顶点放在P点处,并使它的一条直角边过A点,另一条直角边交CD于E点,写出图中与PA相等的线段,并说明理由.21.用长为12m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为Sm2.问当x取什么值时,S最大?并求出S的最大值.22.如图①,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点P是对角线BD上的一点,PQ∥BA交AD于点Q,PS∥BC交DC于点S,四边形PQRS是平行四边形.(1)当点P与点B重合时,图①变为图②,若∠ABD=90o,求证:△ABR≌△CRD;(2)对于图①,若四边形PRDS也是平行四边形,此时,你能推出四边形ABCD还应满足什么条件?图①图②专题六图形的认识(3)一、选择题1.C2.D3.A4.D5.C6.D7.B8.D二、填空题9.510.60o11.AD=BC12.2013.314.菱形三、解答题15.略.16.略.17.(1)略;(2)6.18.(1)略;(2)AB=2EC.四、解答题19.FC=AE,证明略.20.PE=PA,证明略.21.4x,max123S.22.(1)略;(2)BC∥AD.五、解答题23.(1)4;(2)作FM⊥DC,连结GE,S=6x;(3)若S=1,则5x,HG=41,AE376,点E不在边AB上,故不可能等于1.24.(1)1202x,015x;(2)10x时,五边形的面积最小,此时三角形为等腰三角形.五、解答题(每小题7分,共14分)23.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.24.如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30o.点M、N同时以相同速度分别从点A、点D开始在AB、AD上运动.(1)设ND的长为x,用x表示点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.