一、曲线的参数方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、曲线的参数方程在过去的学习中我们已经掌握了一些求曲线方程的方法,在求某些曲线方程时,直接确定曲线上的点的坐标x,y的关系并不容易,但如果利用某个参数作为联系它们的桥梁,那么就可以方便地得出坐标x,y所要适合的条件,即参数可以帮助我们得出曲线的方程f(x,y)=0。下面我们就来研究求曲线参数方程的问题。1、参数方程的概念1、参数方程的概念探究:一架救援飞机在离灾区地面500m的高处以100m/s的速度作水平直线飞行,为使投放的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放时机呢?AM(x,y)xyo飞机在A点将物资投出机舱,在经过飞行航线(直线)且垂直与地面的平面上建立平面直角坐标系,其中x轴为地平面与这个平面的郊交线,y轴经过A点。记物资投出机舱时为时刻0,在时刻t时物资的位置为点M(x,y),则x表示物资的水平位置,y表示物资距地面的高度。由于水平位移量x与高度y是由两种不同的运动得到的,因此直接建立x,y所要满足的关系式并不容易。换个角度看这个问题。由物理知识,物资投出机舱后,它的运动由下列两种运动合成:(1)沿ox作初速为100m/x的匀速直线运动;(2)沿oy反方向作自由落体运动。txy解:物资出舱后,设在时刻,水平位移为,垂直高度为,所以2100,)1500.2xtygt2(g=9.8m/s一、方程组有3个变量,其中的x,y表示点的坐标,变量t叫做参变量,而且x,y分别是t的函数。二、由物理知识可知,物体的位置由时间t唯一决定,从数学角度看,这就是点M的坐标x,y由t唯一确定,这样当t在允许值范围内连续变化时,x,y的值也随之连续地变化,于是就可以连续地描绘出点的轨迹。三、平抛物体运动轨迹上的点与满足方程组的有序实数对(x,y)之间有一一对应关系。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。)2.....(....................)()({tgytfx的值。上,求在曲线、已知点的位置关系与曲线、判断点为参数的参数方程、已知曲线例aCaMCMMttytxC),6()2()4,5(),1,0()1()(123{13212上。不在曲线点这个方程组无解,所以代入方程组,得到把点上。在曲线所以代入方程组,解得的坐标把点解:CMttMCMtM2221112435{)4,5(0)1,0()1(99,21236{),6()2(23aattatCaM所以,解得上,所以在曲线、因为点请用自己的语言来比较一下参数方程与普通方程的异同点2、圆的参数方程xo0MyM(x,y)0M圆周运动是生产生活中常见的。当物体绕定轴做匀速转动时,物体中各个点都做匀速圆周运动,那么怎样刻画运动中点的位置呢?设圆O的半径为r,点M从初始位置出发,按逆时针方向在圆O上做匀速圆周运动,点M绕点O转动的角速度为ω。以圆心O为原点,所在直线为x轴,建立直角坐标系。显然,点M的位置由时刻t惟一确定,因此可取t为参数。r0OM)()(sincos{sin,cos),(速圆周运动的时刻质点作匀有明确的物理意义程。其中参数的圆的参数方,半径为这就是圆心在原点为参数即角函数的定义有:,那么由三=,设=,那么,坐标是转过的角度是,点如果在时刻trOttrytrxrytrxtrOMtyxMMt转过的角度。的位置时,到逆时针旋转绕点的几何意义是其中参数的圆的参数方程,半径为这也是圆心在原点为参数为参数,于是有,也可以取=考虑到00)(sincos{OMOMOOMrOryrxt圆的参数方程的一般形式么样的呢?的圆的参数方程又是怎半径为那么,圆心在点普通方程是的参数方程,它对应的以上是圆心在原点的圆ryxoryx),(,002222220000cos{()s()()inxxyxxryyyrr对应的普通方程为为参数由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程,它们表示的曲线可以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取值范围。练习1已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,∴参数方程为sin3cos1yx(θ为参数)例2如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。yoxPMQ(6,0)oxPMQ(6,0))(sin3cos{sin2sin2,3cos26cos2),sin2,cos2(,),(为参数的轨迹的参数方程是所以,点由中点坐标公式得:的坐标是则点,的坐标是解:设点yxMyxPxOPyxM分析:取为参数,则圆O的参数方程是(θ为参数),当θ变化是,动点P在定圆O上运动,线段PQ也随之变动,从而使点M远动,因此点M的运动可以看成是由角θ决定的。于是,选θ为参数是适合的。xOPsin2cos2yx思考:这里定点Q在圆O上外,你能判断这个轨迹表示什么曲线呢?如果定点Q在圆O上,轨迹是什么?如果定点Q在圆O内,轨迹又是什么?径,并化为普通方程。表示圆的圆心坐标、半所为参数、指出参数方程)(sin235cos2{2yx4)3()5(22yx练习_____________4)0(sin2cos{3,则圆心坐标是是的直径为参数,、圆rrryrrx(2,1)3、参数方程和普通方程的互化cos3,()sinxMy由参数方程为参数直接判断点的轨迹的曲线类型并不容易,但如果将参数方程转化为熟悉的普通方程,则比较简单。2222cos3,sincos(3)1sinxxyyM由参数方程得:所以点的轨迹是圆心在(3,0),半径为1的圆。将曲线的参数方程化为普通方程,有利于识别曲线的类型。曲线的参数方程和普通方程是曲线方程的不同形式。一般地,可以通过消去参数而从参数方程得到普通方程。如果知道变数x,y中的一个与参数t的关系,例如,把它代入普通方程,求出另一个变数与参数的关系那么就是曲线的参数方程。tfxtgytgytfx参数方程和普通方程的互化:(1)普通方程化为参数方程需要引入参数如:①直线L的普通方程是2x-y+2=0,可以化为参数方程.22,tytx(t为参数)②在普通方程xy=1中,令x=tan,可以化为参数方程.cot,tanyx(为参数)(2)参数方程通过代入消元或加减消元消去参数化为普通方程如:①参数方程.sin,cosrbyrax消去参数可得圆的普通方程(x-a)2+(y-b)2=r2..42,tytx②参数方程(t为参数)可得普通方程:y=2x-4通过代入消元法消去参数t,(x≥0)注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.例3、把下列参数方程化为普通方程,并说明它们各表示什么曲线?1()12tytx=t(1)为参数sincos().1sin2yx=(2)为参数(2)把平方后减去得到因为所以因此,与参数方程等价的普通方程是这是抛物线的一部分。(1)11231)11xtyx解:因为所以普通方程是(x这是以(,)为端点的一条射线(包括端点)1xt所以代入ty21cossinxsin21yyx24sin2cossinx2,2x2,2xyx2练习、1.将下列参数方程化为普通方程:sin3cos32yx(1)2cossinyx(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(X≥2或x≤-2)步骤:(1)消参;(2)求定义域。2.求参数方程)20()sin1(21|,2sin2cos|yx表示()(A)双曲线的一支,这支过点(1,21):(B)抛物线的一部分,这部分过(211,);(C)双曲线的一支,这支过点(–1,21);(D)抛物线的一部分,这部分过(–1,21)分析一般思路是:化参数方程为普通方程求出范围、判断。解∵x2=2)2sin2(cos=1+sin=2y,普通方程是x2=2y,为抛物线。)42sin(2|2sin2cos|x∵,又02,0x2,故应选(B)说明这里切不可轻易去绝对值讨论,平方法是最好的方法。例4(1)设x=3cos,为参数;2.tt(2)设y=,为参数22194xy求椭圆的参数方程。解(1)把带入椭圆方程,得到于是由参数的任意性,可取因此椭圆的参数方程为(为参数)1499cos22y3cosxsin2sin4cos14222yysin2y,sin2cos3yx思考:为什么(2)中的两个参数方程合起来才是椭圆的参数方程?2222213,191449txtxtx因此椭圆的参数方程为,2132tytxtytx2132(t为参数)和(2)把ty2代入椭圆方程,得x,y范围与y=x2中x,y的范围相同,2tytx代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.2224sinABCDsinxtxtxtxtytytytyt、、、、曲线y=x2的一种参数方程是().注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.在y=x2中,x∈R,y≥0,分析:发生了变化,因而与y=x2不等价;在A、B、C中,x,y的范围都而在D中,且以练习:普通方程参数方程引入参数消去参数小结

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功