ADAPTIVELEASTSQUARESFINITEELEMENTMETHODSFORTHESTOKESPROBLEMIng-JerLinandDa-PanChenDepartmentofMechanicalEngineering,NationalChiaoTungUniversity,Hsinchu,Taiwan,R.O.C.Jinn-LiangLiuDepartmentofAppliedMathematics,NationalChiaoTungUniversity,Hsinchu,Taiwan,R.O.C.November12,1996Keywords:Adaptive,Stokesproblem,Least-squares niteelementmethod,ErrorestimationABSTRACTAdaptiveleast-squares niteelementmethods,includingthestandardandtheweightedversions,fortheStokesprobleminthevelocity-vorticity-pressureformulationarepresentedinthearticle.Themostsigni cantfeaturesoftheproposedadaptivemethodsarethattheaposteriorierrorestimatorsdonotinvolve uxjumpsacrossinterelementboundaries,thatthelocalproblemsforerrorestimationdonotrequiretheLadyzhenskaya-Babu ska-Brezziconditiontobesatis ed,andthatnoboundaryconditionsarerequiredforcalculatingtheerrorsonanelement-by-elementbasis.Moreover,forboththestandardandtheweightedleast-squaresmethods,theerrorestimationproceduresarealmostidentical.Conse-quently,theadaptivemethodscanbeeasilyincorporatedintotheexistingnonadaptivecodes.Numericalexperimentsareprovidedtoillustratethequalityandreliabilityoftheproposedmethods.INTRODUCTIONRecently,therehasbeensubstantialinterestintheuseofleast-squaresprinciplefortheapproximatesolutionoftheStokesprobleminvelocity-vorticity-pressure(VVP)formulation(BochevandGunzburger,1993;1994;ChangandJiang,1990;Chang,1994;JiangandChang,1990).Theleast-squaresapproacho erscertainadvantageousfea-turescomparedtotheclassicalGalerkinmixedformulation.Forexample,thechoiceof niteelementspacesintheleast-squaresformulationisnotsubjecttotheLBBconditionandasinglecontinuouspiecewisepolynomialspacecanbeusedfortheapproximationofallunknowns.Theapproachyieldssymmetric,positivede nitelinearsystemwhichcanbee ectivelysolvedby,e.g.,conjugategradientmethods.Itdoesnotincurarti -cialconditionsforthevorticityontheboundarywherethevelocityisspeci ed.Finally,accurateapproximationscanbeobtainedforallvariables,includingthevorticity.Inengineeringapplications,thediscretizationerrorisinevitablewhenanumericalmethodisusedtoapproximatethesolutions.Althoughengineerscanevaluatetheaccuracyofthe niteelementsolutionwiththeirexperiences,itisstilldesirabletoadaptthesolutionproceduresinordertoe cientlyestimatetheerrorande ectivelycontroltheerrorandconsequentlytooptimizethecomputingresources.Therapidlygrowingadaptivemethodology(Demkowiczetal.,1989;Odenetal.,1989;1990;Peraireetal.,1992;Rachowiczetal.,1989;Zienkiewiczetal.,1989;ZienkiewiczandZhu,1990;ZhuandZienkiewicz,1990)isaimingtoaidtheseneedsinpractice.Adaptivemethodsinvolvetwobasicprocesses:aposteriorierrorestimationandmeshre nement.Theformercanberegardedasthekerneloftheadaptivescheme.Ouradaptiveschemeforthestandardandtheweightedleastsquaresmethods(SLSFEMandWLSFEM)isbasedontheweakresidualaposteriorierrorestimationproposedin(Liu,1996)inwhichageneralframeworkoftheestimationisdevelopedinanabstract1variationalsetting.Wesummarizethemainadvantagesofourapproachwhencomparedwiththepreviouserrorestimation.First,theerrorestimationdoesnotinvolvethe uxjumpsontheinterfacesofelements.ThisisoneofthemajorconcernsinothererrorestimatorsfortheStokesequations(BankandWelfert,1990;Verfurth,1989).Ourapproachusesinsteadaproperconstructionoflocalshapefunctionsforerrorestimationwhichisbasedonaformulacompletelysimilartothatofapproximation.Thismeansthatthesamecodeusedforapproximationcanalsobeusedforerrorestimation.Hence,asimpleimplementationoftheerrorestimatorcanbeexpected.Wereferto(Liuetal.,1996)formoredetailsrelatedtotheimplementationissues.Second,ourerrorestimatorinherentlyavoidstheveri cationoftheconsistencyLBBconditionfortheestimationsubspacesduetothenatureofLSFEM.Otherwise,somestabilizationtermsmustbeintroducedforlocalerrorestimationwhenthemixedmethodisusedfortheStokesproblem;see,e.g.,(BankandWelfert,1990).Thestabilizationtermsaresomewhatadhoc.Third,ourapproachfurthersimpli estheimplementationwithoutrequiringanyboundaryconditionsbeprescribedforthelocalproblems.Itthusprovidesauni ederrorestimationforbothSLSFEMandWLSFEM.Toourknowledge,itseemstobethe rstuni edapproachforbothadaptiveSLSFEMandWLSFEM.Theremainderofthepaperisarrangedasfollows.InSection2,thevelocity-vorticity-pressureformulationoftheStokesequationsisbrie ydescribed.TheSLSFEMandWLSFEMfortheVVPformulationoftheStokesproblemarethengiveninSection3.TheaposteriorierrorestimatorispresentedinSection4.WealsoincludeanadaptivealgorithminSection5.Numericalresultsshowingthee ectivenessoftheresultingadaptivemethodsandthequalityoftheerrorestimatorareillustratedinSection6.WemakesomeconcludingremarksinSection7.THEVELOCITY-VORTICITY-PRESSUREFORMULATIONOFSTOKESEQUATIONSLet R2beaboundeddomainwithsmoothboundary@ .The2DStokesproblemforincompressible owisgivenby( u+gradp=fin ;divu=0in ;(1)where istheinverseofReynoldsnumber,u=(u1;u2)Tthevelocity,pthetotalheadofpressure,andf=(f1;f2)Tthegivenbodyforce.Hereallvariablesarenondimensionalizedbyacharacteristicvelocityandlengthscale,andbythedensityof uid.Introducingthevorticity!=curluasanauxiliaryvariable(Ch