13.1算术平方根说课教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《算术平方根》说课稿怀安县王虎屯中心学校宋旭飞二〇一〇年十月二十四日《13.1.1算术平方根》说课稿一、教材分析1、地位与作用1.《13.1.1算术平方根》是人教版八年级上第十三章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生以后学习平方根奠定基础;同时这一节也是联系数学与生活的桥梁。2、教学目标知识技能1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。数学思考通过学习算术平方根,建立初步的数感和符号感,发展学生的抽象思维。解决问题在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。情感态度1.通过对实际生活中问题的解决,让学生体会数学与生活是紧密联系着的,提高学习热情。教学重点:1.算术平方根的概念。2.根据算术平方根的概念正确求出非负数的算术平方根。教学难点:算术平方根双重非负性的理解。下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。三、学法指导数学作为基础教育的核心课程之一,要求转变学生的学习方式,倡导学生主动参与、乐于探究、勤于动手,这样不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。这节课我以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了①创设情境——引入概念②观察归纳——形成概念③讨论研究——得出性质④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标接下来,我再具体谈一谈这堂课的教学过程:四、教学流程(一)创设情境——引入概念长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。本节课是通过一个实际生活问题引入的(幻灯片展示)学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?这一活动的目的是:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材。相应的,可完成下表:(幻灯片展示)正方形的面积1916360.25边长通过类似的几个数据的完成,加强学生对这种运算的理解,为引出算术平方根作好铺垫。(二)观察归纳——形成概念上面的问题,引导学生归纳为“已知一个正数的平方,求这个正数”的问题,而这种运算是平方运算的逆运算,在此基础上教师给出算术平方根的定义。(幻灯片展示)一般地,如果一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.问题2:0的算术平方根是多少?怎么表示?规定:0的算术平方根是0.(三)讨论研究——得出性质通过(1)、a可以取任何数吗?(2).a表示的是什么数?两个问题的引导,使学生充分进行讨论、交流,培养学生的合作探索精神。然后教师作出总结:非负数的“算术平方根”是非负数,即a≥0,a≥0;即算术平方根具有双重非负性。(四)即时训练—巩固新知为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我把课本上的例题进行演示,在此强调书写的规范性和语言的准确性,突出本节课的重点。(幻灯片展示)1、例1求下列各数的算术平方根:(1)100;(2)12.学生活动:(幻灯片展示)测试1.求下列各数的算术平方根①25②16③0.36④0(1)通过这一组练习题使学生在了解算术平方根及有关概念的基础上通过观察尝试及对例题的效仿,达到能自己求一个数的算术平方根,进一步巩固算术平方根的概念。(2)紧接着是一组考查算术平方根性质的习题训练(幻灯片展示)例2:下列各式中哪些有意义?哪些无意义?为什么?学生通过判断根式的有无意义来增强对算术平方根性质的理解(3)再下面是一道综合练习题(幻灯片展示)此题在考查算术平方根非负性质的基础上,同时又对已经学过的平方的非负性及绝对值的非负性进行了回顾,使学生认识到几者的共同之处,培养学生正确应用所学知识的应用能力,增强应用意识,参与意解(1)(1):(1)因为=100,102所以100的算术平方根为10,即=10.100(2)因为=1,12因为=1,1212即=1.1即=1.11所以1的算术平方根是1,53233的值求已知zyxzyx3204322识,使他们获得成功体验,激发学习积极性,建立学好数学的自信心。(五)总结反思——提高认识由学生总结本节课所学习的主要内容:让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。学生自由发表对本节课的理解,针对学生存在的问题,让学生之间互相讲解,最后教师明确以下内容:(幻灯片展示)算术平方根是非负数a≥0,被开方是非负数a≥0;0的算术平方根是0负数没有算术平方根。通过小结为学生创造交流的空间,调动学生的积极性,(六)任务后延——自主探究学生经过以上五个环节的学习,已经初步掌握了平方根的概念及求一个数的算术平方根,为了与下节课有机联系,在本课结束时提出问题:(幻灯片展示)本节课所涉及的数都是完全平方数,都是求这些完全平方数的算术平方根,如果求的是一些不完全数的算术平方根,如对2求算术平方根,则2应该是多大的数呢?留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,激发学生的学习热情和探求新知的欲望,使他们能很好的参与到数学学习中来。8、课外作业:(幻灯片展示)(1)P75习题13.1活动第1、2题((22))““优优化化AA””基基础础部部分分。。

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功