第1页共5页上海应用技术学院2014—2015学年第一学期《高等数学(工)1》测试卷(连续、导数、微分)一.单项选择题(每小题2分,共10分)1.设2110021)(2xxxxxxxf则)(xf在(C).A.1,0xx处都连续B.1,0xx处都间断C.0x处间断,1x处连续D.0x处连续,1x处间断2.,11)(11xxeexf点0x是)(xf的(B).A.可去间断点B.跳跃间断点C.无穷间断点D.连续点3.如果)(xf是ll,上的可导奇函数,则)(xf是ll,上的(B).A.奇函数B.偶函数C.非奇非偶函数D.可能是奇函数也可能是偶函数4.设21sin0()0,0xxfxxx,,则()fx在0x处(A).A.连续、可导B.连续、不可导C.既不连续也不可导D.无法判断5.函数()yfx在点0x处有增量0.2x,对应函数增量的线性主部等于0.8,则0fx(C).A.4B.0.16C.4D.1.6第2页共5页二.填空题(每小题3分,共15分)6.设102cos()2cossin0xxfxxkxxx在点0x处连续,则k2.7.在区间3(0,)2内,函数2cos()65sinxfxxxx的间断点个数为4.8.设)(xf在0x处可导,则hxfhxfh)()2(lim00002()fx.9.设)(xfy具有连续的一阶导数,若1)2(f,ef)2(,则11)(xxf1e.10.设332)21())(1(xexxyx,则y2232163112xxyxexxxex.三.计算题(每小题7分,共56分)11.已知11()xxfxx,试补充定义)0(f,使得)(xf在0x处连续.解:为了使)(xf在0x处连续,必须满足0lim()(0)xfxf.....................(1分)0011lim()limxxxxfxx01111lim11xxxxxxxx.......(3分)02lim111xxx...........................................(5分)所以应补充定义(0)1f,就能使得)(xf在0x处连续........................(7分)第3页共5页12.讨论函数221()32xfxxx间断点的类型.解:函数)(xf的间断点为1x,2x.....................................(2分)2211111lim()limlim2322xxxxxfxxxx...............................(4分)2222211lim()limlim322xxxxxfxxxx...............................(6分)所以,1x是函数)(xf的可去间断点,2x是函数)(xf的无穷间断点........(7分)13.设2coslnsinsec2xyxx,求dydx.解:21cosln(sin)sec22xyxx......................................(2分)11sinln(sin)coscot2secsectan22222xxxxxxx.................(6分)21sinln(sin)coscotsectan222xxxxxx...........................(7分)14.设22[()()]yfxgx,其中f,,g可微,求dy.解:2222()()()()dyfxgxxgxdx..............................(3分)222()()()22()()fxgxxxgxgxdx.......................(7分)15.设)(xyy是由方程01lnxyexy所确定的隐函数,求0xdxdy.解:0x时1ey.......................................................(1分)0111)(xyyyxyexy...............................................(5分)将0x时1ey代入21eey.....................................(7分)第4页共5页16.设方程3222txtye确定了函数)(xyy,求dxdy,22dxyd.解:2222362tetedxdytt.....................................................(3分)5224222229)1(6966ttettteetdxydttt.........................................(7分)17.设xxysin21,求y.解:)1ln(sinln2xxy,..............................................(1分)2212sin)1ln(cos1xxxxxyy...................................(5分)22sin21sin2)1ln(cos)1(xxxxxxyx.................................(7分)18.设20()sin0xebxfxaxx,问ba,为何值时,)(xf在0x处可导.解:因为)0(f存在,所以函数)(xf在0x处必连续,bf1)0(...........(1分))0(fbbexfxxx1)(lim)(lim200................................(2分))0(f0sinlim)(lim00axxfxx....................................(3分)由)0()0()0(fff得1b.....................................(4分)hfhffh)0()0(lim)0(021lim20hehh............................(5分)ahahhfhffhh0sinlim)0()0(lim)0(00.........................(6分)由)0()0(ff,得到2a...........................................(7分)第5页共5页四.综合题(第19题9分,第20题10分)19.证明:双曲线2xya上任一点处的切线与两坐标轴构成的三角形的面积都等于22a.解:由2xya得2ayx,22akyx....................................(2分)设00(,)xy为曲线上任一点,则过该点的切线方程为20020ayyxxx........(5分)又200xya,令0y,得2000022yxxxxa...............................(6分)令0x,得20002ayyyx..............................................(7分)所以此切线与二坐标轴构成的三角形面积为20000122222Sxyxya.......(9分)20.设函数)(xf在),(上有定义,在区间2,0上)4()(2xxxf,若对任意的x都满足)2()(xkfxf,其中k是常数.(1)写出)(xf在0,2上的表达式;(2)问k为何值时,)(xf在0x处可导.解:(1)当02x时,220x.....................................(1分))4)(2(4)2()2()2()(2xxkxxxkxkfxf................(4分)(2)显然0)0(f,........................................................(5分)4)4(lim0)0()(lim)0(200xxxxfxffxx.............................(7分)kxxxkxxfxffxx8)4)(2(lim0)0()(lim)0(00.......................(9分)故48k21k)(xf在0x处可导.............................(10分)