18.1勾股定理第二课时

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学习目标:1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。3、培养数形结合的数学思想,并积极参与交流,并积极发表意见。学习重点、难点:重点:利用勾股定理在数轴上表示无理数。难点:确定以无理数为斜边的直角三角形的两条直角边长。学习方法:自主探究、合作交流学习过程:一、预习导学:1.①在运用解决问题时,每个直角三角形需知道几个条件?②直角三角形中哪条边最长?2.在长方形ABCD中,宽AB为1m,长BC为2m,求AC长.3.在Rt△ABC中,AC=3cm,BC=2cm,AB=?cm二、学习探究:1.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?2.分析:如果能画出长为_______的线段,就能在数轴上画出表示13的点。容易知道,长为2的线段是两条直角边都为______的直角边的斜边。长为13的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为13的线段是直角边为正整数_____、______的直角三角形的斜边。3.作法:在数轴上找到点A,使OA=_____,作直线l垂直于OA,在l上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示13的点。日期2011.4班级姓名满都户九年一贯制学校八年(下)数学导学案课题:勾股定理(2)课时:34主备教师:审核教师:检查领导:何伟英L6488884.在数轴上画出表示17的点?(尺规作图)活动2:简单应用1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积。3.已知:如图,等边△ABC的边长是6cm。⑴求等边△ABC的高。⑵求S△ABC。4.已知一个工件尺寸如图(单位:mm),计算L的长(精确到1mm)?DCBA三、巩固延伸:1.已知直角三角形中30°角所对的直角边长是32cm,则另一条直角边的长是()A.4cmB.34cmC.6cmD.36cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为.6.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.7.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长。四、疑难反馈:(1)你有哪些收获?(2)你还有哪些疑惑?自我评价:教师评价:家长意见:“路”4m3mBCDA

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功