Article electronically published on December 22, 2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MATHEMATICSOFCOMPUTATIONVolume73,Number248,Pages1913{1935S0025-5718(03)01623-5ArticleelectronicallypublishedonDecember22,2003MULTIVARIATEREFINABLEHERMITEINTERPOLANTBINHAN,THOMASP.-Y.YU,ANDBRUCEPIPERAbstract.Weintroduceageneralde nitionofre nableHermiteinterpolantsandinvestigatetheirgeneralproperties.Wealsostudyanotionofsymmetryofthesere nableinterpolants.Resultsandideasfromtheextensivetheoryofgeneralre nementequationsareappliedtoobtainresultsonre nableHermiteinterpolants.Thetheorydevelopedhereisconstructiveandyieldsaneasy-to-useconstructionmethodformultivariatere nableHermiteinterpolants.Usingthismethod,severalnewre nableHermiteinterpolantswithrespecttodi erentdilationmatricesandsymmetrygroupsareconstructedandanalyzed.SomeoftheHermiteinterpolantsconstructedherearerelatedtowell-knownsplineinterpolationschemesdevelopedinthecomputer-aidedgeometricdesigncommunity(e.g.,thePowell-Sabinscheme).Wemakesomeoftheseconnec-tionsprecise.AsplineconnectionallowsustodeterminecriticalHolderreg-ularityinatrivialway(asopposedtothecaseofgeneralre nablefunctions,whosecriticalHolderregularityexponentsareoftendiculttocompute).Whileitisoftenmentionedinpublishedarticlesthat\re nablefunctionsareimportantforsubdivisionsurfacesinCAGDapplications,itisratherunclearwhetheranarbitraryre nablefunctionvectorcanbemeaningfullyappliedtobuildfree-formsubdivisionsurfaces.Thebivariatesymmetricre n-ableHermiteinterpolantsconstructedinthisarticle,alongwithalgorithmicdevelopmentselsewhere,giveanapplicationofvectorre nabilitytosubdivi-sionsurfaces.Webrieydiscussseveralpotentialadvantageso eredbysuchHermitesubdivisionsurfaces.1.MotivationandintroductionLet=(i)mi=1beacolumnvectoroffunctionsde nedonRs.Wesaythatisre nablewithrespecttothedilationmatrixMifthereexistsa nitelysupportedsequenceaofmmmatricessuchthat=X 2Zsa( )(M ):(1.1)Re nabilityisimportantforatleasttwo|notimmediatelyrelated|reasons.Ontheonehand,itallowsforthede nitionofanestedsequenceofshift-invariantspacesVj:=spanf(Mj ): 2Zsg.Thisso-calledmulti-resolutionanalysis(MRA)isthekeytowaveletconstructionsandtheirassociatedfast lter-bankalgorithms[3].Ontheotherhand,functionscomposedfromlinearcombinationsReceivedbytheeditorJanuary,22,2002and,inrevisedform,March27,2003.2000MathematicsSubjectClassi cation.Primary41A05,41A15,41A63,42C40,65T60,65F15.Keywordsandphrases.Hermiteinterpolation,re nablefunction,vectorre nability,subdivi-sionscheme,shiftinvariantsubspace,multivariatespline,Bernstein-Bezierform,wavelet,subdi-visionsurface.c2003AmericanMathematicalSociety19131914BINHAN,THOMASP.-Y.YU,ANDBRUCEPIPERofshiftsofare nablecanbecomputedusingasimplesubdivisionalgorithm.Consequently,suchfunctionscanbecomputedatanydesiredresolutionandanydesiredposition.Suchanadaptive\zoom-inpropertymakessubdivisioncurvesandsurfacesveryattractiveforinteractivegeometricmodellingapplications.Itisprobablyhardtoperceivehowfunctionslike(1.1),constructedonaregu-largridin\at-spaceRs,canactuallybeusedtomodelthekindof\free-formsurfacesofarbitrarytopologicaltypeencounteredingeometricmodellingandcom-putergraphicsapplications.Thisisanadvance rstmadeinthe1970'sinthecomputergraphicscommunitybyCatmull-Clark[9]andDoo-Sabin[14].Wecan-nota ordthespacetorevieweventhebasicideaofsubdivisionsurfaceshere,butsimplymentionthattheconstructionofasubdivisionsurfaceistypicallybasedon rstconstructingwhatwenowcallare nablefunctionintheregulargridsettingfollowedbydesigningadditionalsubdivisionrulesattheso-calledextraordinaryvertices.Werefertotherecentbook[35]forthissubject.Thispaperfocusesonthe rststepmentionedabove:constructionofre n-ablefunctions.Butinsteadofscalarre nablefunctions(i.e.,m=1in(1.1)),whichunderlieallexistingmethodsofsubdivisionsurfaces(e.g.,Catmull-Clark,Loop,Buttery),weareinterestedhereinthemoregeneralre nablefunctionvec-tors.Whiletheconceptofvectorre nabilityisextensivelystudiedbyanumberofresearchers|mainlyinconjunctionwiththeideaofmultiwavelets(see,e.g.,[2],[5]),toourknowledgethereisnoformalpublicationonanyattemptsofapplyingre nablefunctionvectorstothesettingofsubdivisionsurfaces.Someinitialat-temptsinthisdirection,basedontheresultsofthispaper,canbefoundintherecentconferencepaper[36].Itiswellknownthatsmoothnessofa(scalar)re nablefunctionandshortnessofthesupportsizeofitsmaskaretwocontradictingrequirements.Forexample,itwasprovedin[21]thatnoC2interpolatingdyadicre nablefunctioncanbesupportedon[3;3]sandnoC1dyadicre nablefunctioncanbesupportedon[1;1]sinanydimensions.Therefore,toobtainsmootherre nableinterpolantswehavetomakecertaintradeo ssomewhere;vectorre nability,whichisbasedonincreasingthenumberofgeneratingfunctions,isoneinterestingapproach.Thisideaseemsparticularlyappealinginthesettingofsubdivisionsurfaceswhere,asmentionedearlier,oneneedstobeconcernedabouttheconstructionofspecialsubdivisionrulesatextraordinaryverticesand(consequently)onewouldliketokeepthesupportsizeoftheunderlyingre nablefunctionsassmallaspossible.Anothermotivationofourstudyofmultivariatere nableHermiteinterpolantsisperhapsmorefarfetched:existinginterpolat

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功