19.2.2菱形的判定导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云19.2.2菱形的判定导学案【学习目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.【学习重难点】菱形的两个判定方法.【学习过程】一、温故知新:1.菱形的定义:2.菱形的性质:边:__________________________;______________________________角:__________________________;______________________________对角线:______________________________________________________对称性:.二、学习新知:探究一:如图,四边形是菱形吗?为什么?归纳:有一组邻边相等的平行四边形是菱形探究二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过探究,容易得到:对角线的平行四边形是菱形证明上述结论:探究三:李芳同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,容易得到:的四边形是菱形证明上述结论:例1.如图,ABCD的两条对角线AC、BD相交于点O,AB=5,AC=8,DB=6求证:四边形ABCD是菱形.三、练习1.判断题,对的画“√”错的画“×”(1).对角线互相垂直的四边形是菱形()(2).一条对角线垂直另一条对角线的四边形是菱形()(3)..对角线互相垂直且平分的四边形是菱形()(4).对角线相等的四边形是菱形()2.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?求证:(1)四边形ABCD是平行四边形(2)过A作AE⊥BC于E点,过A作AF⊥CD于F.用等积法说明BC=CD.(3)求证:四边形ABCD是菱形.ABCDEF3.已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.4.如图,在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点.求证:MN与PQ互相垂直平分。5.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.ABNPQMDC2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云6.如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.四、中考链接一、选择题1.(2011•西宁)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形故选B.2.(2011•莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=21(BC﹣AD),⑤四边形EFGH是菱形.其中正确的个数是()A、1B、2C、3D、4故选C.3.(2011湖南益阳)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C.D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形故选:B.4.(2011襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形故选D.5.(2011清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD故选C.二、填空题1.(2011•贵港)如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于18cm2.2.(2011福建省三明市,14,4分)如图,▱ABCD中,对角形AC,BD相交于点O,添加一个条件,能使▱ABCD成为菱形.你添加的条件是(不再添加辅助线和字母)故答案为:AB=BC或AC⊥BD等.2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云三、解答题1.(2011江苏镇江常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.解答:证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=12AB,DE=12AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD(SAS),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)2.(2011新疆乌鲁木齐)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.解答:证明:(1)∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BC∵E,F分别为AB,CD的中点,∴BE=21AB,DF=21CD,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=21AB=AD,而∠DAB=60°∴△AED是等边三角形,即DE=AE=AD,故DE=BE∴平行四边形DEBF是菱形.(2)四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB∴四边形AGBD是平行四边形由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°故∠ADB=90°∴平行四边形AGBD是矩形.3.(2011云南保山)如图,在平行四边形ABCD中,点P是对角线AC上一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?解答:解:是菱形.理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,∴AC是∠DAB的角平分线,∴∠DAC=∠CAE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形.4.(2011•贵港)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云解答:(1)证明:如图,∵AE平分∠BAD,∴∠1=∠2,∵AB=AD,AE=AE,∴△BAE≌△DAE,∴BE=DE,∵AD∥BC,∴∠2=∠3=∠1,∴AB=BE,∴AB=BE=DE=AD,∴四边形ABED是菱形.(2)解:△CDE是直角三角形.如图,过点D作DF∥AE交BC于点F,则四边形AEFD是平行四边形,∴DF=AE,AD=EF=BE,∵CE=2BE,∴BE=EF=FC,∴DE=EF,又∵∠ABC=60°,AB∥DE,∴∠DEF=60°,∴△DEF是等边三角形,∴DF=EF=FC,∴△CDE是直角三角形.5.(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.解答:(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠AEF=∠EAC,∵AF=CE=AE,∴∠F=∠AEF=∠EAC=∠ECA.又∵AE=EA,∴△AEC≌△EAF,∴EF=CA,∴四边形ACEF是平行四边形.(2)当∠B=30°时,四边形ACEF是菱形.理由是:∵∠B=30°,∠ACB=90°,∴AC=,∵DE垂直平分BC,∴BE=CE,又∵AE=CE,∴CE=,∴AC=CE,∴四边形ACEF是菱形.6.(2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是矩形.解答:解:(1)证明:∵矩形ABCD,∴OA=OC,OD=OB,AC=BD,∴OA=OD,∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是菱形.(2)∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∵菱形ABCD,2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形.故答案为:矩形.7.(2011•临沂)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.解答:证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠B,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;证明:(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.8.(2011丽江市中考)如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?解答:解:是菱形.理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,∴AC是∠DAB的角平分线,∴∠DAC=∠CAE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形.9.(2011浙江宁波)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.2012年春季八年级数学下册第19章平行四边形学案主备人:胡元云解答:证明:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=21AB,CF=21CD.∴AE=CF,∴△ADE≌△CBF,∴∠3=∠CBF,∵∠ADB=∠CBD,∴∠2=∠FBD,∴DE∥BF,(2)∵∠G=90°,∴四边形AGBD是矩形,∠ADB=90°,∴∠2+∠3=90°,∴2∠2+2∠3=180°.∴∠1=∠2,∠3=∠4.∴DE=AE=BE,∵AB∥CD,DE∥BF,∴四边形DEBF是菱形.10.(2011浙江衢州)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功