1995年全国初中数学联赛试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1995年全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有()A.a<b<cB.c<b<a.C.c<a<bD.a<c<b2.方程组6323xyyzxzyz的正整数解的组数是()A.1B.2.C.3D.43.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是()A.01mB.34mC.314mD.314m4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为()A.62πB.63πC.64πD.65π5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则()A.M>NB.M=NC.M<ND.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则()A.a>0且b>0B.a<0且b>0C.a>0且b<0D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有______个.2.已知a是方程x2+x-14=0的根,则354321aaaaa的值为___________.3.设x为正实数,则函数y=x2-x+1x的最小值是__________.4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.GFEDOCBA第二试一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图).求证:F为△CDE的内心.二、在坐标平面上,纵坐标与横坐标都是整数的点称为整点,试在二次函数2910105xxy的图象上找出满足yx的所有整点(x,y)并说明理由.三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和.1995年全国初中数学联赛参考答案第一试一、选择题1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有c=(53)11=12511<24311=(35)11=a<25611=(44)11=b。选C。利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。2.讲解:这类方程是熟知的。先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。3.讲解:显然,方程的一个根为1,另两根之和为x1+x2=2>1。三根能作为一个三角形的三边,须且只须|x1-x2|<1又有0≤4-4m<1.4.讲解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2=252+602=52×(52+122)=52×132=(32+42)×132=392+522=BC2+CD2故可取BD=65为直径,得周长为65π,选D.5.讲解:此题的得分率最高,但并不表明此题最容易,因为有些考生的理由是错误的.比如有的考生取AB为直径,则M=N=0,于是就选B.其实,这只能排除A、C,不能排除D.不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.6.讲解:取a=-1、b=2可否定A、C、D,选B.一般地,对已知不等式平方,有|a|(a+b)>a|a+b|.显然|a||(a+b)|>0(若等于0,则与上式矛盾),有两边都只能取1或-1,故只有1>-1,即有a<0且a+b>0,从而b>-a>0.选B.二、填空题1.讲解:本题虽然以计算为载体,但首先要有试验观察的能力.经计算12,22,…,102,知十位数字为奇数的只有42=16,62=36.然后,对两位数10a+b,有(10a+b)2=20a(5a+b)+b2.其十位数字为b2的十位数字加上一个偶数,故两位数的平方中,也中有b=4或6时,其十位数字才会为奇数,问题转化为,在1,2,…,95中个位数出现了几次4或6,有2×9+1=19.2.讲解:这类问题一般都先化简后代值,直接把a学生在这道题上的错误主要是化简的方向不明确,最后又不会将a2+a作为整体代入.这里关键是整体代入,抓住这一点,计算可以灵活.比如,由①有由②-①,得由③-②并将④代入,得还可由①得⑥÷⑤即得所求.3.讲解:这个题目是将二次函数y=x2-x与反比例函数因而x=1时,y有最小值1.4.讲解:此题由笔者提供,原题是求sin∠CAB,让初中生用代数、几何相结合的方法求特殊角的三角函数值sin75°、sin15°.解法如下:与AB2=AB2+AC2②联立,可推出而式①、③表明,AB、AC是二次方程改为求∠CAB之后,思路更宽一些.如,由第二试一、讲解:首先指出,本题有IMO29-5(1989年)的背景,该题是:在直角△ABC中,斜边BC上的高,过△ABD的内心与△ACD的内心的直线分别交边AB和AC于K和L,△ABC和△AKL的面积分别记为S和T.求证S≥2T.在这个题目的证明中,要用到AK=AL=AD.今年的初中联赛题相当于反过来,先给出AK=AL=AD(斜边上的高),再求证KL通过△ABD、△ADC的内心(图7).其次指出,本题的证法很多,但思路主要有两个:其一,连FC、FD、FE,然后证其中两个为相应的角平分线;其二是过F作三边的垂线,然后证明其中两条垂线段相等.下面是几个有代表性的证法.证法1:如图6,连DF,则由已知,有连BD、CF,由CD=CB,知∠FBD=∠CBD-45°=∠CDB-45°=∠FDB,得FB=FD,即F到B、D和距离相等,F在线段BD的垂直平分线上,从而也在等腰三角形CBD的顶角平分线上,CF是∠ECD的平分线.由于F是△CDE上两条角平分线的交点,因而就是△CDE的内心.证法2:同证法1,得出∠CDF=45°=90°-45°=∠FDE之后,由于∠ABC=∠FDE,故有B、E、D、F四点共圆.连EF,在证得∠FBD=∠FDB之后,立即有∠FED=∠FBD=∠FDB=∠FEB,即EF是∠CED的平分线.本来,点E的信息很少,证EF为角平分线应该是比较难的,但四点共圆把许多已知信息集中并转移到E上来了,因而证法2并不比证法1复杂.由这个证明可知,F是△DCB的外心.证法4:如图8,只证CF为∠DCE的平分线.由∠AGC=∠GBA+∠GAB=45°+∠2,∠AGC=∠ADC=∠CAD=∠CAB+∠1=45°+∠1得∠1=∠2.从而∠DCF=∠GCF,得CF为∠DCE的平分线.证法5:首先DF是∠CDE的平分线,故△CDE的外心I在直线DF上.现以CA为y轴、CB为x轴建立坐标系,并记CA=CB=CD=d,则直线AB是一次函数y=-x+d①的图象(图9).若记内心I的坐标为(x1,y1),则x1+y1=CH+IH=CH+HB=CB=d满足①,即I在直线AB上,但I在DF上,故I是AB与DF的交点.由交点的唯一性知I就是F,从而证得F为Rt△CDE的内心.还可延长ED交⊙O于P1,而CP为直径来证.二、讲解:此题的原型由笔者提供.题目是:于第一象限内,纵坐标小于横坐标的格点.这个题目的实质是解不等式求正整数解.直接解,数字较繁.但有巧法,由及1≤y<x,知1+2+…+(x-1)<1995<1+2+…+x.但1953=1+2+…+62<1995<1+2+…+62+63=2016,得x=63,从而y=21,所求的格点为(21,63).经过命题组的修改之后,数据更整齐且便于直接计算.有x2-x+18≤10|x|.当x≥0时,有x2-11x+18≤0,得2≤x≤9,代入二次函数,得合乎条件的4个整点:(2,2),(4,3),(7,6),(9,9);当x<0时,有x2+9x+18≤0,得-6≤x≤-3,代入二次函数,得合乎条件的2个整点:(-6,6),(-3,3).对x≥0,取x=2,4,7,9,12,14,…顺次代入,得(2,2)、(4,3)、(7,6)、(9,9),且当x>9时,由对x0,取x=-1,-3,-6,-8,…顺次代入,得(-3,3)、(-6,6),且当x-6时,由知y-x,再无满足y≤|x|的解.故一共有6个整点,图示略.解法3:先找满足条件y=|x|的整点,即分别解方程x2-11x+18=0①x2+9x+18=0②可得(2,2)、(9,9)、(-6,6)、(-3,3).再找满足y<|x|的整点,这时2<x<9或-6<x<-3,依次检验得(4,3)、(7,6).故共有6个整点.三、讲解:直观上可以这样看,当n>6时,在2,3,…,n-2中,必有一个数A与n互质(2≤A≤n-2),记B=n-A≥2,有n=A+B.此时,A与B必互质,否则A与B有公约数d>1,则d也是n的约数,从而A与n有大于1的公约数,与A、n互质矛盾.但是,对于初中生来说,这个A的存在性有点抽象,下面分情况,把它具体找出来.(1)当n为奇数时,有n=2+(n-2),(2)当n为偶数,但不是4的倍数时,有(3)当n为偶数,且又是4的倍数时,有

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功