CLOSED-LOOPPERFORMANCEANDBIFURCATIONANALYSISOFACASCADECONTROLLEDEXOTHERMICCSTRLouisP.RussoandB.WayneBequetteHowardP.IsermannDepartmentofChemicalEngineeringRensselaerPolytechnicInstituteTroy,NY12180-3590russol@rpi.edubequeb@rpi.eduFax:(518)276-4030Tel:(518)276-6683Presentedatthe1995AnnualAIChEmeetinginMiami,FL.Session68:ChemicalReactorStabilityandDynamics-68g.Itisincreasinglyunderstoodthatlimitationstocontrolsystemperformanceareduetononlineare ectsintheopen-loopsystem.Aplethoraofnonlinearbehaviorssuchaslargeamplitudeunforcedoscillations,ignition/extinctionbehavior,andchaoticoscillationsarefoundinchemicalprocesses,particularlychemicalreactors.Duetotheincreasinglyintegratednatureofunitoperations,itisimportanttodesignrobustcontrolstrategiestominimizethesetypesofbehavior.Inthispaperweshowthatthetraditionalmethodsofanalyzingcascadecontrol(basedonseriesorparallelinput/outputrelationships)shouldnotbeusedwhentheprimaryandsecondaryprocessesarecoupled,andtheprocessisopen-loopunstable.Inaddition,wedevelopacascadecontrolsystemmethodologywhichincorporatesaspeci edinner-loopcontrollerintheouter-loopcontrollerdesign.Thiscascadecontroldesignprocedureiscomparedtoaconventionalcascadecontroldesignprocedureandtoanoncascadecontrolstrategy.Thebifurcationbehaviorofthecascadecontrolstructureisexamined,andpreviousresultsareextendedtothecaseofmultipleoutputsbeingfed-back.Anequationrelatingthefeedbackgainsattheonsetofalimitpointinstabilityisderived.Keywords:Cascadecontrol;chemicalreactors;unstableprocesses;bifurcation.1INTRODUCTIONInput/output(transferfunction)analysisisoftenusedtodesignfeedbackcontrolsystemsforchemicalprocesses.Cascadecontrolsystemsareusuallydesignedby rsttuningaslavecontrolloopbasedonthetransferfunctionmodelofthesecondaryprocess.Iftheslaveloopcanbetuned\fastenough,thenthemasterloopcanbetunedbasedontheprimaryprocesstransferfunction,independentoftheslaveloop.Ifthebandwidthoftheslaveloopisclosetothatoftheprimaryloop,thentheloopsmustbeiterativelytuned,untilacceptableperformanceoftheentireclosed-loopprocessisobtained.Implicitinthetypicalcontrollerdesignprocessistheassumptionthatthesecondaryandprimaryprocessesaredecoupled.Thisisillustratedbythetypicalseriescascadecontrolblockdiagram,showninFigure1.Theoutputofthesecondaryprocessistheinputtotheprimaryprocessinaseriescascadecontrolblockdiagram.Similarly,aparallelcascadecontrolstructure(inwhichthemanipulatedinputhasadirecte ectonbothoftheoutputs)isshowninFigure2.Themotivatingproblemiscascadecontrolofanexothermiccontinuousstirredtankreactor(CSTR)operatedatanopen-loopunstableoperatingpoint.Althoughmanynewnonlinearcontroltechniqueshavebeendeveloped(Bequette,1991;McLellanetal.,1990;KravarisandKantor,1990),weuselinearcontrolfortworeasons: Linearfeedbackandcascadecontrollersarestillthedominantstrategiesusedinindustry. Thelineartechniquesarewell-knownandeasytouseforcomparisonpurposes.2CSTRMODELINGEQUATIONSThestandardtwo-stateCSTRmodel(Uppaletal.,1974)describinganexothermicdiabaticirreversible rst-orderreaction(A!B)isasetoftwononlinearordinarydi erentialequationsobtainedfromdynamicmaterialandenergybalances(withtheassumptionsofconstantvolume,perfectmixing,negligiblecoolingjacketdynamics,andconstantphysicalparameters).dCadt=QV(Caf Ca) k0exp EaRT Ca(1)dTdt=QV(Tf T) UAV Cp(T Tc)+ H Cp k0exp EaRT Ca(2)whereCaandTaretheconcentrationofcomponentAandthetemperatureinthereactor,respectively.AnadditionalenergybalancearoundthecoolingjacketassumingperfectmixingyieldsdTcdt=QcVc(Tcf Tc)+UAVc cCpc(T Tc)(3)whereTcisthecoolingjackettemperature.Equations1-3canbewrittenindimensionlessformdx1d =q(x1f x1) x1 (x2)(4)dx2d =q(x2f x2) (x2 x3)+ x1 (x2)(5)2dx3d = 1[qc(x3f x3)+ 2(x2 x3)](6)wherex1,x2,x3,andqcarethedimensionlessconcentration,reactortemperature,coolingjackettemperature,andcoolingjacket owrate,respectively.Thesedimensionlessvariablesandparameters(forexample: ,q, ,etc.)arede nedinTable1.RepresentativevaluesoftheparameterscanbefoundinRussoandBequette(1995a,1995b),withCase1andCase2conditionslistedinTable2.Case1isopen-loopstableovertheentireregionofoperationforthetwo-stateCSTRmodel(cf.Figure3)butopen-loopunstableinacertainoperatingregionforthethree-stateCSTRmodel(cf.Figure4).Case2exhibitsignition/extinctionbehaviorforthetwo(cf.Figure5)andthree-statemodels(cf.Figure6).Itisimportanttoconsiderthecoolingjacketinthecontrolsystemdesign,especiallyduetosafetyconsider-ations.TheoutputmultiplicitiesshowninFigure4resultinignition/extinctionbehavior.IftheCSTRisbeingoperatedatanopen-loopunstableoperationpoint(sayx2=2:0)andthecoolingjacket owratehitsaconstraint(thuse ectively\openingupthecontrolloop)thenthetwo-statemodelincorrectlypredictsstablebehaviorwhilethethree-statemodelwillcorrectlypredictinstability.Itiswell-knownthattheexponentialrelationshipofreactionratewithrespecttoreactortemperatureisoneofthemajornonlinearitiesoftheCSTR.RussoandBequette(1995a,1995b)studiedboththesteady-statenonlinearities(outputandinputmultiplicities,infeasibleoperationregions)andthedynamicnonlinearities(Hopfbifurcationbehavior)o