1998年全国高考数学理科试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1998年普通高等学校招生全国统一考试数学(文史类)一.选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-第(15)题每小题5分,65分.在每小题给出四项选项,只一项符合题目要求的奎屯王新敞新疆(1)sin600º()1133....2222ABCD(2)函数y=a|x|(a>1)的图像是()(3)已知直线x=a(a>0)和圆(x-1)2+y2=4相切,那么a的值是()A.5;B.4;C.3;D.2。(4)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是()A.12120AABBB.12120AABBC.12121AABBD.12121AABB(5)函数f(x)=x1(x≠0)的反函数f-1(x)=()A.x(x≠0)B.1(0)xxC.-x(x≠0)D.1(0)xx(6)、已知点(sincos,)Ptg在第一象限,则在(0,2)内α的取值范围是A.35(,)(,)244B.5(,)(,)424C.353(,)(,)2442D.3(,)(,)424(7)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为()A.120°B.150°C.180°D.240°(8)复数-i的一个立方根是i,它的另外两个立方根是()A.3122iB.3122iC.3122iD.3122i(9)如果棱台的两底面积是S,S′,中截面的面积是S0,那么()A.22'SSB.0'SSSC.02'SSSD.202'SSS(10)2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士.不同的分配方A.6种;B.12种;C.18种;D.24种。(11)向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,那么水瓶的形状是()(12)椭圆31222yx=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是A.±43;B.±23;C.±22;D.±43。(13)球面上有3个点,其中任意两点的球面距离都等于大圆周长为61,经过这3个点的小圆的周长为4π,那么这个球的半径为()A.43B.23C.2D.3(14)一个直角三角形三内角的正弦值成等比数列,其最小内角的正弦值为()A.251;B.2252;C.215;D.2252。(15)等比数列{an}的公比为-21,前n项的和Sn满足nlimSn=11a,那么11a的值为()A.3;B.±23;C.2;D.26。二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(16)设圆过双曲线116922yx的一个顶点和一个焦点,圆心在双曲线上,则圆心到双曲线中心距离是(17)(x+2)10(x2-1)的展开的x10系数为____________(用数字作答)奎屯王新敞新疆(18)如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考试所有可能的情形奎屯王新敞新疆)(19)关于函数f(x)=4sin(2x+3)(x∈R),有下列命题①y=f(x)的表达式可改写为y=4cos(2x-6);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图像关于点06,对称;④y=f(x)的图像关于直线x=-6对称.其中正确的命题的序号是______奎屯王新敞新疆(注:把你认为正确的命题的序号都.填上.)三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)(本小题满分10分)设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.(21)(本小题满分11分)在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A-C=3,求sinB的值.以下公式供解题时参考:2cos2sin2sinsin,2sin2cos2sinsin,2cos2cos2coscos,2sin2sin2coscos.(22)(本小题满分12分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线C的方程.(23)(本小题满分12分)已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90º,BC=2,AC=23,且AA1⊥A1C,AA1=A1C1.(Ⅰ)求侧棱A1A与底面ABC所成角的大小;(Ⅱ)求侧面A1ABB1与底面ABC所成二面角的大小;(Ⅲ)求侧棱B1B和侧面A1ACC1的距离.(24)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).(25)(本小题满分12分)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.(Ⅰ)求数列{bn}的能项bn;(Ⅱ)设数列{an}的通项an=lg(1+nb1),记Sn是数列{an}的前n项的和.试比较Sn与21lgbn+1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(文史类)参考解答及评分标准一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)D(2)B(3)C(4)A(5)B(6)B(7)C(8)D(9)A(10)B(11)B(12)A(13)B(14)C(15)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)316(17)-5120(18)AC⊥BD,或任何能推导出这个条件的其他条件.例如ABCD是正方形,菱形等(19)①,③注:第(19)题多填、漏填的错填均给0分.三.解答题:(20)本小题主要考查不等式基本知识,不等式的解法.满分10分.解:将原不等式化为(a2-b2)x+b2≥(a-b)2x2+2(a-b)bx+b2,移项,整理后得(a-b)2(x2-x)≤0,∵a≠b即(a-b)2>0,∴x2-x≤0,即x(x-1)≤0.解此不等式,得解集{x|0≤x≤1}.(21)本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.满分11分.解:由正弦定理和已知条件a+c=2b得sinA+sinC=2sinB.由和差化积公式得BCACAsin22cos2sin2.由A+B+C=π,得2)sin(CA=2cosB,又A-C=3,得23cos2B=sinB,∴23cos2B=2sin2Bcos2B.∵0<2B<2,2cosB≠0,∴sin2B=43,从而cos2B=2sin12B=413∴sinB=23413=839(22)本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.满分12分.解法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点.依题意知:曲线段C是以点N为焦点,以l2为准线的抛线段的一段,其中A、B分别为C的端点.设曲线段C的方程为y2=2px(p>0),(xA≤x≤xB,y>0),其中xA,xB分别为A,B的横坐标,P=|MN|.所以M(-2P,0),N(2P,0).由|AM|=17,|AN|=3得(xA+2P)2+2PxA=17,①(xA-2P)2+2PxA=9.②由①、②两式联立解得xA=P4,再将其代入①式并由p>0解得14Axp或22Axp.因为△AMN是锐角三角形,所以2P>xA,故舍去22Axp.∴P=4,xA=1.由点B在曲线段C上,得xB=|BN|-2P=4.综上得曲线段C的方程为y2=8x(1≤x≤4,y>0).解法二:如图建立坐标系,分别以l1、l2为x、y轴,M为坐标原点.作AE⊥l1,AD⊥l2,BF⊥l2,垂足分别为E、D、F.设A(xA,yA)、B(xB,yB)、N(xN,0).依题意有xA=|ME|=|DA|=|AN|=3,yA=|DM|=22DAAM=22,由于△AMN为锐角三角形,故有xN=|AE|+|EN|=4.=|ME|+22AEAN=4XB=|BF|=|BN|=6.设点P(x,y)是曲线段C上任一点,则由题意知P属于集合{(x,y)|(x-xN)2+y2=x2,xA≤x≤xB,y>0}.故曲线段C的方程y2=8(x-2)(3≤x≤6,y>0).(23)本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.满分12分.注:题中赋分为得到该结论时所得分值,不给中间分.解:(Ⅰ)作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,∴∠A1AD为A1A与面ABC所成的角.∵AA1⊥A1C,AA1=A1C,∴∠A1AD=45º为所求.(Ⅱ)作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.∴∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=23,∴DE=1,AD=A1D=3,tgA1ED=DEDA1=3.故∠A1ED=60º为所求.(Ⅲ)作BF⊥AC,F为垂足,由面A1ACC1⊥面ABC,知BF⊥面A1ACC1.∵B1B∥面A1ACC1,∴BF的长是B1B和面A1ACC1的距离.在Rt△ABC中,2222BCACAB,∴362ACBCABBF为所求.(24)本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.满分12分.解法一:设y为流出的水中杂质的质量分数,则y=abk,其中k>0为比例系数,依题意,即所求的a,b值使y值最小.根据题设,有4b+2ab+2a=60(a>0,b>0),得aab230(0<a<30=,①于是aaakabky230226432aak264234aak2642234aak18k当a+2=264a时取等号,y达最小值.这时a=6,a=-10(舍去).将a=6代入①式得b=3.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.解法二:依题意,即所求的a,b的值使ab最大.由题设知4a+2ab+2a=60(a>0,b>0)即a+2b+ab=30(a>0,b>0).∵a+2b≥2ab,∴22ab+ab≤30,当且仅当a=2b时,上式取等号.由a>0,b>0,解得0<ab≤18.即当a=2b时,ab取得最大值,其最大值18.∴2b2=18.解得b=3,a=6.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.(25)本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳,推理能力以及用数学归纳法进行论证的能力.满分12分.解:(Ⅰ)设数列工{bn}的公差为d,由题意得b1=1,10b1+d2)110(10=100.解得b1=1,d=2.∴bn=2n-1.(Ⅱ)由bn=2n-1,知Sn=lg(1+1)+lg(1+31)+…+lg(1+121n)=lg[(1+1)(1+31)·…·(1+121n)],2

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功