1教案编写日期

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1教案编写日期:年月日计划课时:课题(章节)22.3实际问题与二次函数教材分析本节课是在学生学习完二次函数的图象和性质的知识的基础上的进一步拓展与应用.教学目标(三维目标)教学目标:1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。教学重点探究利用二次函数的最大值(或最小值)解决实际问题的方法.教学难点根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围。教学方法教学手段学法指导学情分析课件准备教具准备教学内容及过程设计设计意图1.创设情境,引出问题从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?小球运动的时间是3s时,小球最高.小球运动中的最大高度是45m2.结合问题,拓展一般如何求出二次函数y=ax2+bx+c的最小(大)值?由于抛物线y=ax2+bx+c的顶点是最低(高)点,当时,二次函数y=ax2+bx+c有最小(大)值3.类比引入,探究问题用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?解:设矩形的一边为Lm,则矩形的另一边为(30-L)m,由于L>0,且30-L>O,所以O<L<30。围成的矩形面积S与L的函数关系式是S=L(30-L)即S=-L2+30L(有学生自己完成,老师点评)303225bta(),2243045445acbha().abx2.abacy4422.列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围.3.在自变量的取值范围内,求出二次函数的最大值或最小值.1.由于抛物线y=ax2+bx+c的顶点是最低(高)点,当时,二次函数y=ax2+bx+c有最小(大)值abx2.abacy4424.归纳探究,总结方法5、练一练:(1)、某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?请同学们完成解答;教师巡视、指导;师生共同完成解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+1OOx)即y=-1OOx2+1OOx+200配方得y=-100(x-12)2+225因为x=12时,满足0≤x≤2。所以当x=12时,函数取得最大值,最大值y=225。所以将这种商品的售价降低0.5元时,能使销售利润最大。小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否在自变量的取值范围内,并求相关的值:(5)解决提出的实际问题。6.课堂小结(1)如何求二次函数的最小(大)值,并利用其解决实际问题?(2)在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法?板书设计作业布置课后反思检查情况记录自查互查教研组查其他检查

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功