2.2平方根(第一课时)教学设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章实数2.平方根(一)一、学生起点分析学生已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.这节课的教学,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,因此确定本节的教学目标如下:·知识与技能目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.3.了解算术平方根的性质.·过程与方法目标1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力.2.在合作交流等活动中,培养他们的合作精神和创新意识.·情感与态度目标1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:对算术平方根的概念和性质的理解.三、教法学法教学方法:讲授法.课前准备:教具:教材,多媒体课件,电脑.学具:教材,笔,练习本.四、教学过程:本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大的正方形,那么有a2=2,a=,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:x2=,y2=,z2=,w2=.意图:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示x2=2,y2=3,z2=4,w2=5;能求得z=2,但不能求得x、y、w的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二。第二环节:初步探究内容1:情境引出新概念x2=2,y2=3,z2=4,w2=5,已知幂和指数,求底数x,你能求出来吗?意图:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x,y是1到2之间的数,w是2到3之间的数但无法表示x、y、w,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为“a”,读作“根号a”.特别地,我们规定0的算术平方根是0,即00.意图:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用巩固概念问题情境初步探究反馈练习学习小结作业布置深入探究11111ABOCDExyzw例1求下列各数的算术平方根:(1)900;(2)1;(3)6449;(4)14.意图:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为302=900,所以900的算术平方根是30,即30900;(2)因为12=1,所以1的算术平方根是1,即11;(3)因为6449872,所以6449的算术平方根是87,即876449;(4)14的算术平方根是14.内容4:回解课堂引入问题x2=2,y2=3,w2=5,那么x=2,y=3,w=5.第三环节:深入探究内容1:例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?意图:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将h=4.9t2进行变形,再用求算术平方根的方法求得题目的解.解:将h=19.6代入公式得h=4.9t2,t2=4,所以t=4=2(秒).即铁球到达地面需要2秒.说明:此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.意图:让学生认识到算术平方根定义中的两层含义:a中的a是一个非负数,a的算术平方根a也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是;2.9的算术平方根是;3.2)32(的算术平方根是;4.若22m,则2)2(m=.二、求下列各数的算术平方根:36,144121,15,0.64,410,225,0)65(.三、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210;15;1;三、解:由题意得AC=5.5米,BC=4.5米,∠ABC=90°,在Rt△ABC中,由勾股定理得105.45.52222BCACAB(米).所以帐篷支撑竿的高是10米.意图:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评。第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a中的双重非负性:一是a≥0,二是a≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.意图:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3五、教学设计说明1.设计理念要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.CBA“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,”的“正数x”,即被开方数是正的,由平方的意义,a也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.知识拓展在教学中,根据学生的实际情况,在学有余力的情况下,可用以下的例题和练习题进行知识的拓展:内容:例已知042yx,求xy的值.解:因为2x和4y都是非负数,并且042yx,所以02x,04y,解得x=2,y=-4,所以16)4(2xy.意图:加深对算术平方根概念中两层含义的认识,会用算术平方根的概念来解决有关的问题.效果:达到能灵活运用算术平方根的概念和性质的目的.课后还可以布置相应的拓展性习题:内容:1.已知0232212zyx,求x+y+z的值.2.若x,y满足52112yxx,求xy的值.3.求55xx中的x.4.若115的小数部分为a,115的小数部分为b,求a+b的值.5.△ABC的三边长分别为a,b,c,且a,b满足04412bba,求c的取值范围.解:1.因为21x≥0,22y≥0,23z≥0,且0232212zyx,所以21x=0,22y=0,23z=0,解得21x,2y,23z,所以x+y+z=3.2.因为2x-1≥0,1-2x≥0,所以2x-1=0,解得x=21,当x=21时,y=5,所以xy=21×5=25.3.解:因为x-5≥0,xx55≥0,所以x=5.4.解:因为4113,所以115的整数部分为8,115的整数部分为1,所以115的小数部分3118115a,115的小数部分1141115b,所以1114311ba.5.解:由04412bba,可得0)2(12ba,因为1a≥0,2)2(b≥0,所以1a=0,2)2(b=0,所以a=1,b=2,由三角形三边关系定理有:b-acb+a,即1c3.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功