2.第4章半固态金属铸造工艺

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第4章半固态金属铸造工艺4.1概述自1971年美国麻省理工学院的D.B.Spencer和M.C.Flemings发明了一种搅动铸造(stircast)新工艺,即用旋转双桶机械搅拌法制备出Srr15%pb流变浆料以来,半固态金属(SSM)铸造工艺技术经历了20余年的研究与发展。搅动铸造制备的合金一般称为非枝晶组织合金或称部分凝固铸造合金(PartiallySolidifiedCastingAlloys)。由于采用该技术的产品具有高质量、高性能和高合金化的特点,因此具有强大的生命力。除军事装备上的应用外,开始主要集中用于自动车的关键部件上,例如,用于汽车轮毂,可提高性能、减轻重量、降低废品率。此后,逐渐在其它领域获得应用,生产高性能和近净成型的部件。半固态金属铸造工艺的成型机械也相继推出。目前已研制生产出从600吨到2000吨的半固态铸造用压铸机,成形件重量可达7kg以上。当前,在美国和欧洲,该项工艺技术的应用较为广泛。半固态金属铸造工艺被认为是21世纪最具发展前途的近净成型和新材料制备技术之一。4.2工艺原理在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2左右时,枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5~0.6时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。4.3半固态金属的流变特性半固态金属的流变特性是指在外力作用下半固态金属的流动、变形性能。研究半固态金属的流变特性对半固态金属的制备和成形技术具有重要的指导意义。当金属液中固体金属颗粒的组分大于0.05~0.1时,其流变行为即呈现非牛顿体型。在更高的固体组分(0.5~0.6)时,浆料呈非线性粘塑性,具有宾汉(Binghan)流体的特性。虽然合金成份、半固态金属的制造条件、固体相的形状与大小等因素对半固态金属的流变性能都有影响,但固相组分的数量对流变性能的影响最大。通常用半固态金属的表观粘度作为其流变性的指标。有研究者通过在一定剪切变形速度及冷却条件下的搅拌试验,测定了在不同固体组分下的铝、铜、铁半固态金属的表观粘度得到如下公式所示的半固态金属表观粘度表达式:式中ηa半固态金属表观粘度,Pa.s,ηLa金属液表观粘度(Pa.s),ρm合金密度(kg.m-3),C凝固速度,s-1,剪切变形速度,s-1,fs固相率。由于半固态金属浆料中的固相率主要由半固态金属的温度来决定,因此在实际应用中温度的控制非常重要。使半固态金属发生变形时的剪切应变率对表观粘度也有很大影响。用高温旋转粘度计对稳定状态的半固态A356铝合金的表观粘度进行了测定,结果如图4-1所示。该表观稳定态粘度可以用公式的形式来表示:式中η表观粘度,剪切率,C稠度,m为指数,其数值为-1.2至-1.3。上述情况都是在搅拌试验进行几十分钟,粘度不再变化,达到稳定状态时得出的结果。对于连续冷却状态,则表观粘度较稳定态的稍高。在实际成型加工中,半固态金属充填型腔的时间只持续几秒钟,在这一瞬间由于液体相的粘度,固体颗粒的数量、大小、形貌均在变化,情况变得十分复杂。有关实验通过对锡-15%铅所作的试验后指出,在给定的结构下,半固态浆料的瞬时结构特性为随着剪切率的增加表观粘度有所增加。将搅拌的半固态金属浆料凝固后再重新加热至半固态,由于半固态金属的触变性,当切变速率很小或等于零时,半固态金属的粘度很高,可以象固体一样夹持及搬运,而当其受到较高剪切应力,产生较大切变速率时,粘度迅速降低,变得与流体一样很容易成形。和其它具有触变性能的材料一样,半固态金属浆料也具有滞后回线现象,如图4-2所示。对于初晶为树枝状的半固态合金,当固相率达到0.3左右就无法流动,而初晶形状为近乎圆形的半固态合金,即使固相率超过0.5,也还有流动性,这说明凝固时晶粒形态对流变性有重大影响。制造半固态金属浆料时,搅拌速度、冷却速度及固相组分对非树枝状结构的生成具有如图4-3所示的影响。图4-2半固态金属剪切应力与粘度的触变现象图4-3非树枝晶结构生成机理示意图4.4合金制备制备半固态合金的方法很多,除机械搅拌法外,近几年又开发了电磁搅拌法,电磁脉图4-1A356铝合金浆料稳态表观粘度与剪切率的关系冲加载法、超声振动搅拌法、外力作用下合金液沿弯曲通道强迫流动法、应变诱发熔化激活法(SIMA)、喷射沉积法(Ospray)、控制合金浇注温度法等。其中,电磁搅拌法、控制合金浇注温度法和SIMA法,是最具工业应用潜力的方法。(1)机械搅拌法机械搅拌是制备半固态合金最早使用的方法。Flemings等人用一套由同心带齿内外筒组成的搅拌装置(外筒旋转,内筒静止),成功地制备了锡-铅合金半固态浆液;H.Lehuy等人用搅拌桨制备了铝-铜合金、锌-铝合金和铝-硅合金半固态浆液。后人又对搅拌器进行了改进,采用螺旋式搅拌器制备了ZA-22合金半固态浆液。通过改进,改善了浆液的搅拌效果,强化了型内金属液的整体流动强度,并使金属液产生向下压力,促进浇注,提高了铸锭的力学性能。图4-4为采用机械搅拌方式连续生产金属浆料的装置。对于铝、铜合金和铸铁,该法可实现固相率为0.5的浆料的连续生产。机械搅拌也可采用剪切冷却辊方式(2)电磁搅拌法电磁搅拌是利用旋转电磁场在金属液中产生感应电流,金属液在洛伦磁力的作用下产生运动,从而达到对金属液搅拌的目的。目前,主要有两种方法产生旋转磁场:一种是在感应线圈内通交变电流的传统方法;另一种是1993年由法国的C.Vives推出的旋转永磁体法,其优点是电磁感应器由高性能的永磁材料组成,其内部产生的磁场强度高,通过改变永磁体的排列方式,可使金属液产生明显的三维流动,提高了搅拌效果,减少了搅拌时的气体卷入。电磁搅拌法与机械搅拌相比,减少了搅拌器对浆料的污染,但在制备高固相率的浆料时,搅拌速度会急剧降低,表观粘度迅速增加,使浆料的排出发生困难。图4-5为一种采用半固态金属制造铝基复合材料的电磁搅拌装置。该装置中的4对磁极以0~3000r/min的速度回转。为了使浆料产生三维运动,磁铁与旋转中心轴之间有10°的偏转角,呈螺旋形放置。采用该装置已制造出A356铝合金为基体,加入平均颗粒尺寸为29μm的20vol%SiC颗粒的复合材料锭。图4-4机械搅拌式半固态金属制造装置图4-5制造铝基复合材料用电磁搅拌装置(3)应变诱发熔化激活法(SIMA)应变诱发熔化激活法(SIMA)是将常规铸锭经过预变形,如进行挤压,滚压等热加工制成半成品棒料,这时的显微组织具有强烈地拉长形变结构,然后加热到固液两相区等温一定时间,被拉长的晶粒变成了细小的颗粒,随后快速冷却获得非枝晶组织铸锭。SIMA工艺效果主要取决于较低温度的热加工和重熔两个阶段,或者在两者之间再加一个冷加工阶段,工艺就更易控制。SIMA技术适用于各种高、低熔点的合金系列,尤其对制备较高熔点的非枝晶合金具有独特的优越性。已成功应用于不锈钢、工具钢和铜合金、铝合金系列,获得了晶粒尺寸20um左右的非枝晶组织合金,正成为一种有竞争力的制备半固态成形原材料的方法。但是,它的最大缺点是制备的坯料尺寸较小。(4)近几年开发的新方法近几年来,东南大学及日本的Aresty研究所发现,通过控制合金的浇注温度,初生枝晶组织可转变为球粒状组织。该方法的特点是,不需要加入合金元素也无需搅拌。V.Dobatkin等人提出了在液态金属中加细化剂,并进行超声处理后获得半固态铸锭的方法,称之为超声波处理法,如图4-6所示。4.5成形方法半固态合金成形方法很多,主要有:(1)流变铸造(Rheoforming,Rheocast)将金属液从液相到固相冷却过程中进行强烈搅动,在一定固相分数下,直接将所得到的半固态金属浆液压铸或挤压成形,见图4-7。R.Shibata等人曾将用电磁搅拌方法制备的半固态合金浆液直接送入压铸机射室中成形。该方法生产的铝合金铸件的力学性能较挤压铸件高,与半固态触变铸件的性能相当。流变铸造采用金属熔体做原料,冷却搅拌产生半固态合金浆料后,以管路或容器输送至压铸机直接成形,对于流变铸造,由于非枝晶半固态合金浆料在保持、状态控制和输送等方面存在着困难,在很大程度上限制了其工业应用,从而慢于触变铸造工业应用的步伐。随着半固态铸造技术的进展,触变铸造在预制材料均匀性及成本、感应加热控制及材料消耗、成形过程的可靠性及重复性、废料回收等方面的限制越来越明显,其经济效益很难尽人如意,因此开发流变铸造再度受到人们的重视。日本日立制作所及UBE都开发出新的流变铸造工艺及设备。对镁合金的实验结果显示,其机械性能较触变铸造低。总之,随着上述关键问题的突破,流变铸造不仅可以以低成本生产高质量的成形件,而且生产流程将比触变铸造显著缩短,更易于与传统压铸技术接轨,减少设备投资。显然,流变铸造技术将会有更大的应用潜力。(2)触变铸造(Thixoforming,Thixocast)将已制备的非枝晶组织锭坯重新加热到固液两相区达到适宜粘度后,进行压铸或挤压成形,如图4-8所示。美国的EOPCO,HPMCorp.,PrinceMachine,THTPresses,以及瑞士的Buhler公司,意大利的IDRAUSA,ItalpresseofAmerica,加拿大的ProducerUSA,日本的Toshiba图4-6超声波处理法示意图图4-7流变铸造工艺示意图MachineCorp和UBEMachineryServices等均已能生产半固态铝合金触变成形专用设备。该方法坯料的加热、输送易于实现自动化,故是当今半固态铸造的主要工艺方法。;但是,制备预制坯料需要巨大的投资,而且关键技术为国外少数几家公司所垄断,导致其成本居高不下,仅适于制造需高强度的关键零件。(3)触变注射成形(Thixomolding)1988年美国DOWChemicalCo发明了一种新的半固态金属成形法,该法将普通压铸与注塑成形这两种工艺结合在一起,取消了通常的熔化设备,是一种一步成形的半固态镁合金加工方法,并取得了专利。1990年后在密执安的AnnArbor成立了独立的Thixomat,Inc.从事该项技术的商业性经营。第二代设备于1991年10月投入使用。由HPM公司制造的3920kN半固态触变成形压射设备主要由两部份组成,其模具的锁型机构与普通压铸机的相同,而压射机构则采用带电热装置的螺旋式压射机构,其原理如图4-9所示。颗粒状的AZ91D镁合金通过加料器加入到多段控温的圆筒中,为防止氧化从加料器处通入氩气,圆筒内装有可前后运动及旋转的螺旋搅拌器。圆筒用感应与电阻两种方式加热。转动的螺旋将加热至半固态的原材料向前输送,材料在混合的同时受剪切力的作用,当一定数量的半固态镁合金进入螺旋前方的储存室后,螺旋即以预定的速度向前运动,将金属浆料压射入模腔,压射完成后,螺旋向后回复到原位。该设备的生产率为123kg/h,可以生产的最大零件的质量为1.5kg。对于AZ91D镁合金压射温度为580℃,较普通压铸低70~80℃,此时金属浆料的固相率为0.3。设备从室温启动到达到工作温度约需90min。螺旋压射时的速度为250~380cm/s,半固态金属所受的压强为31~55MPa。设备由计算机控制,运行1h的平均能耗约为29kW。该法生产的零件尺寸精确,性能也较压铸的更为优越。而镁合金零件的价格则较热室压铸机生产的低10%。利用该技术已生产了50万个以上的调整器变速箱壳体,生产的零件还有工业电子显示器框架、铰接件、电子仪器壳体等。利用该项技术已有40多种零件通过了原型试验,遍及汽车、电子及消费品各个领域。图4-9镁合金注射触变成型设备示意图触变注射成形是在从原料供给到零件制造的封闭系统内一次性完成的过程,系统运行稳定性良好。主要优点如下:1)清洁、安全和节能。与传统压铸相比,触变注射成形无需液态金属熔炼和浇铸等过程,单位成形件的原材料消耗大大减少;无爆炸危险;没有熔渣产生;无需SF6气体

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功