1通信原理2通信原理第10章数字信号最佳接收3第10章数字信号最佳接收10.1数字信号的统计特性以二进制为例研究接收电压的统计特性。假设:通信系统中的噪声是均值为0的带限高斯白噪声,其单边功率谱密度为n0;并设发送的二进制码元为“0”和“1”,其发送概率分别为P(0)和P(1),则有P(0)+P(1)=1若此通信系统的基带截止频率小于fH,则根据低通信号抽样定理,接收噪声电压可以用其抽样值表示,抽样速率要求不小于其奈奎斯特速率2fH。设在一个码元持续时间Ts内以2fH的速率抽样,共得到k个抽样值:,则有k=2fHTs。4第10章数字信号最佳接收由于每个噪声电压抽样值都是正态分布的随机变量,故其一维概率密度可以写为式中,n-噪声的标准偏差;n2-噪声的方差,即噪声平均功率;i=1,2,…,k。设接收噪声电压n(t)的k个抽样值的k维联合概率密度函数为222exp21)(nininnf),,,(21kknnnf5第10章数字信号最佳接收由高斯噪声的性质可知,高斯噪声的概率分布通过带限线性系统后仍为高斯分布。所以,带限高斯白噪声按奈奎斯特速率抽样得到的抽样值之间是互不相关、互相独立的。这样,此k维联合概率密度函数可以表示为当k很大时,在一个码元持续时间Ts内接收的噪声平均功率可以表示为:或者将上式左端的求和式写成积分式,则上式变成kiinknkkknnfnfnfnnnf122212121exp21)()()(),,,(kiisHkiinTfnk1212211kiisHTsnTfdttnTs120221)(16第10章数字信号最佳接收利用上式关系,并注意到式中n0-噪声单边功率谱密度则前式的联合概率密度函数可以改写为:式中n=(n1,n2,…,nk)-k维矢量,表示一个码元内噪声的k个抽样值。需要注意,f(n)不是时间函数,虽然式中有时间函数n(t),但是后者在定积分内,积分后已经与时间变量t无关。n是一个k维矢量,它可以看作是k维空间中的一个点。Hnfn02sTkndttnnf020)(1exp21)(n)()()(),,,()(2121kkknfnfnfnnnffn7第10章数字信号最佳接收在码元持续时间Ts、噪声单边功率谱密度n0和抽样数k(它和系统带宽有关)给定后,f(n)仅决定于该码元期间内噪声的能量:由于噪声的随机性,每个码元持续时间内噪声的波形和能量都是不同的,这就使被传输的码元中有一些会发生错误,而另一些则无错。sTdttn02)(8第10章数字信号最佳接收设接收电压r(t)为信号电压s(t)和噪声电压n(t)之和:r(t)=s(t)+n(t)则在发送码元确定之后,接收电压r(t)的随机性将完全由噪声决定,故它仍服从高斯分布,其方差仍为n2,但是均值变为s(t)。所以,当发送码元“0”的信号波形为s0(t)时,接收电压r(t)的k维联合概率密度函数为式中r=s+n—k维矢量,表示一个码元内接收电压的k个抽样值;s-k维矢量,表示一个码元内信号电压的k个抽样值。dttstrnfsTkn20000)()(1exp21)(r9第10章数字信号最佳接收同理,当发送码元“1“的信号波形为s1(t)时,接收电压r(t)的k维联合概率密度函数为顺便指出,若通信系统传输的是M进制码元,即可能发送s1,s2,…,si,…,sM之一,则按上述原理不难写出当发送码元是si时,接收电压的k维联合概率密度函数为仍需记住,以上三式中的k维联合概率密度函数不是时间t的函数,并且是一个标量,而r仍是k维空间中的一个点,是一个矢量。dttstrnfsTkn20101)()(1exp21)(rdttstrnfsTikni200)()(1exp21)(r10第10章数字信号最佳接收10.2数字信号的最佳接收“最佳”的准则:错误概率最小产生错误的原因:暂不考虑失真的影响,主要讨论在二进制数字通信系统中如何使噪声引起的错误概率最小。判决规则设在一个二进制通信系统中发送码元“1”的概率为P(1),发送码元“0”的概率为P(0),则总误码率Pe等于式中Pe1=P(0/1)-发送“1”时,收到“0”的条件概率;Pe0=P(1/0)-发送“0”时,收到“1”的条件概率;上面这两个条件概率称为错误转移概率。01)0()1(eeePPPPP11第10章数字信号最佳接收按照上述分析,接收端收到的每个码元持续时间内的电压可以用一个k维矢量表示。接收设备需要对每个接收矢量作判决,判定它是发送码元“0”,还是“1”。由接收矢量决定的两个联合概率密度函数f0(r)和f1(r)的曲线画在下图中(在图中把r当作1维矢量画出。):可以将此空间划分为两个区域A0和A1,其边界是r0,并将判决规则规定为:若接收矢量落在区域A0内,则判为发送码元是“0”;若接收矢量落在区域A1内,则判为发送码元是“1”。A0A1rf0(r)f1(r)r0P(A0/1)P(A1/0)12第10章数字信号最佳接收显然,区域A0和区域A1是两个互不相容的区域。当这两个区域的边界r0确定后,错误概率也随之确定了。这样,总误码率可以写为式中,P(A0/1)表示发送“1”时,矢量r落在区域A0的条件概率P(A1/0)表示发送“0”时,矢量r落在区域A1的条件概率这两个条件概率可以写为:这两个概率在图中分别由两块阴影面积表示。A0A1rf0(r)f1(r)r0P(A0/1)P(A1/0))0/()0()1/()1(10APPAPPPe0)()1/(10AdfAPrr1)()0/(01AdfAPrr13第10章数字信号最佳接收将上两式代入得到参考上图可知,上式可以写为上式表示Pe是r0的函数。为了求出使Pe最小的判决分界点r0,将上式对r0求导并令导函数等于0,求出最佳分界点r0的条件:)0/()0()1/()1(10APPAPPPe10)()0()()1(01AAedfPdfPPrrrr'0'0)()0()()1(01rredfPdfPPrrrrA0A1rf0(r)f1(r)r0P(A0/1)P(A1/0))()0()()1('00'01'0rrrfPfPPe0)()0()()1(0001rrfPfP14第10章数字信号最佳接收即当先验概率相等时,即P(1)=P(0)时,f0(r0)=f1(r0),所以最佳分界点位于图中两条曲线交点处的r值上。在判决边界确定之后,按照接收矢量r落在区域A0应判为收到的是“0”的判决准则,这时有:若则判为“0”;反之,若则判为“1”。在发送“0”和发送“1”的先验概率相等时,上两式的条件简化为:0)()0()()1(0001rrfPfP)()()0()1(0100rrffPP)()()0()1(10rrffPP)()()0()1(10rrffPPA0A1rf0(r)f1(r)r0P(A0/1)P(A1/0)若f0(r)f1(r),则判为“0”若f0(r)f1(r),则判为“1”15第10章数字信号最佳接收这个判决准则常称为最大似然准则。按照这个准则判决就可以得到理论上最佳的误码率,即达到理论上的误码率最小值。以上对于二进制最佳接收准则的分析,可以推广到多进制信号的场合。设在一个M进制数字通信系统中,可能的发送码元是s1,s2,…,si,…,sM之一,它们的先验概率相等,能量相等。当发送码元是si时,接收电压的k维联合概率密度函数为于是,若则判为si(t),其中,dttstrnfsTikni200)()(1exp21)(r),()(rrjiffMjij,,2,116第10章数字信号最佳接收10.3确知数字信号的最佳接收机确知信号:指其取值在任何时间都是确定的、可以预知的信号。判决准则当发送码元为“0”,波形为so(t)时,接收电压的概率密度为当发送码元为“1”,波形为s1(t)时,接收电压的概率密度为因此,将上两式代入判决准则式,经过简化,得到:dttstrnfsTkn20000)()(1exp21)(rdttstrnfsTkn20101)()(1exp21)(r17第10章数字信号最佳接收若则判为发送码元是s0(t);若则判为发送码元是s1(t)。将上两式的两端分别取对数,得到若则判为发送码元是s0(t);反之则判为发送码元是s1(t)。由于已经假设两个码元的能量相同,即所以上式还可以进一步简化。ssTTdttstrnPdttstrnP02002010)()(1exp)0()()(1exp)1(ssTTdttstrnPdttstrnP02002010)()(1exp)0()()(1exp)1(ssTTdttstrPndttstrPn00200210)()()0(1ln)()()1(1lnssTTdttsdtts021020)()(18第10章数字信号最佳接收若式中则判为发送码元是s0(t);反之,则判为发送码元是s1(t)。W0和W1可以看作是由先验概率决定的加权因子。最佳接收机按照上式画出的最佳接收机原理方框图如下:ssTTodttstrWdttstrW00011)()()()()0(ln200PnW)1(ln201PnW19第10章数字信号最佳接收W1r(t)S1(t)S0(t)W0t=Ts比较判决积分器积分器ssTTodttstrWdttstrW00011)()()()(20r(t)S0(t)S1(t)积分器积分器比较判决t=Ts第10章数字信号最佳接收若此二进制信号的先验概率相等,则上式简化为最佳接收机的原理方框图也可以简化成ssTTdttstrdttstr0001()()()()ssTTodttstrWdttstrW00011)()()()(21第10章数字信号最佳接收由上述讨论不难推出M进制通信系统的最佳接收机结构上面的最佳接收机的核心是由相乘和积分构成的相关运算,所以常称这种算法为相关接收法。由最佳接收机得到的误码率是理论上可能达到的最小值。积分器r(t)SM(t)S0(t)S1(t)比较判决积分器积分器22第10章数字信号最佳接收10.4确知数字信号最佳接收的误码率总误码率在最佳接收机中,若则判为发送码元是s0(t)。因此,在发送码元为s1(t)时,若上式成立,则将发生错误判决。所以若将r(t)=s1(t)+n(t)代入上式,则上式成立的概率就是在发送码元“1”的条件下收到“0”的概率,即发生错误的条件概率P(0/1)。此条件概率的计算结果如下ssTTdttstrPndttstrPn00200210)()()0(1ln)()()1(1lnaxdxeaPP22221)()1/0(23第10章数字信号最佳接收式中同理,可以求出发送s0(t)时,判决为收到s1(t)的条件错误概率式中axdxeaPP22221)()1/0(sTdttstsPPna02010)]()([21)1()0(ln2sTdttstsnD020102)]()([2)(bxdxebPP22221)()0/1(STdttstsPPnb02100)]()([21)0()1(ln224第10章数字信号最佳接收因此,总误码率为先验概率对误码率的影响当先验概率P(0)=0及P(1)=1时,a=-及b=,因此由上式计算出总误码率Pe=