1矩形、菱形、正方形一、选择题1.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为A.17B.17C.18D.192.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B.332C.3D.63.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条4.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1B.2C.3D.45.已知一个菱形的周长是20cm,两条对角线的比是4∶3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm26.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6(第7题图)FEDCBA27.如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∩A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.23B.33C.4D.438.(2011四川绵阳7,3)下列关于矩形的说法中正确的是A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分9.如图(5),在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G。下列结论:①tan∠HBE=cot∠HEB②CGBFBCCF③BH=FG④22BCBGCFGF.其中正确的序号是A.①②③B.②③④C.①③④D.①②④10.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=43CG2;③若AF=2DF,则BG=6GF.其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.11.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形12.(2011湖南湘潭市,5,3分)下列四边形中,对角线相等且互相垂直平分的是A.平行四边形B.正方形C.等腰梯形D.矩形13.如图2,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于A.23B.1C.32D.2图2EDCBAABCDEFGH314.如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A.15°B.30°C.45°D.60°(第10题图)HGFEDCBA15.依次连接菱形的各边中点,得到的四边形是A.矩形B.菱形C.正方形D.梯形16.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD,下列结论:①EG⊥FH②四边形EFGH是矩形③HF平分∠EHG④EG=21(BC-AD)⑤四边形EFGH是菱形其中正确的个数是()A.1B.2C.3D.417.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形19.如图将边长为2的正方形与原正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,的新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.2B.12C.1D.1420.如图,边长为1的正方形ABCD绕点A逆时针旋转45゜后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是()A.2B.22C.1+2D.3421.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()(第10题)PNFEDCABMA.1个B.2个C.3个D.4个22.如图3所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若125CEF,那么∠ABE的度数为()A.150B.200C.250D.30023.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.163B.16C.83D.824.如图4,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.626.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=3,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为().A.3B.2C.3D.32ACPEFBDAEDCFCB5二、填空题1.长为1,宽为a的矩形纸片(121a),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_____________.2.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.O2O13.如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.5.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。已知第一个矩形的面积为1,则第n个矩形的面积为。6.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_______________.7.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.8.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.ABCDEFGHABCD……69.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为_____㎝2.10.如同,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=cm.11.如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.12.已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交于点M,则MCAM的值是。13.有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。14.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=时,四边形ABCN的面积最大.15.如图6,已知菱形ABCD,其顶点A,B在数轴对应的数分别为-4和1,则BC=__.图60DABCBADCE716.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA。下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75º;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF.。其中正确的是__________________(只填写序号)18.如图,矩形纸片ABCD,M为AD边的中点,将纸片沿BM、CN折叠,使点A落在A1处,点D落在点D1处,若∠1=40°,则∠BMC的度数为.19.如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF=.20.如图,已知正方形ABCD的边长为1,若以正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积Sn=.21.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于cm2。22.将边长分别为2,22,23,24…的正方形的面积记作1S,2S,3S,4S,…,计算12SS,23SS,34SS,…若边长为2n(n为正整数)的正方形面积记作nS,根据你的计算结果,猜想nnSS1.ABCD60°ABADACAEAFA823.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为(结果保留π).三、解答题1.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.2.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,求线段QR的中点M所经过的路线围成的图形的面积ABCQRMD93.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.4.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?AFNDCBMEO105.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点运动到什么位置时,四边形BCGE是菱形?并说明理由.AGCDBFE图(a)ADCBFEG图(b)