成功经理人提供大量企业管理资源下载以知识铺就成功之道,用智慧编织美好人生基于成交量标度的股价动力学分析*吴文锋吴冲锋**(上海交通大学管理学院,200052)摘要传统的基于时间标度的股价动力学分析方法缺乏考虑成交量的重要作用,本文在股价调整的成交量进程时间假设下,提出基于成交量标度的股价动力学分析方法。通过对上证综合指数的实证研究,结果表明基于成交量标度的股价动力学分析方法的可行性和有效性。关键词成交量标度成交量进程时间假设股价1引言长期以来,成交量一直被金融实务界看作影响价格变动的重要因素,它是交易者从市场上能观察到的除了价格之外的另一重要变量。交易者从成交量中获取信息进行学习,并据此制定交易策略。在金融理论上,成交量与股价变动绝对值之间呈正相关关系,成交量影响股票收益率的自相关性、互自相关性和惯性效应,成交量已作为金融或宏观经济事件的“信息含量”的一种度量方法。但是,传统的基于时间标度的股价动力学模型却很少考虑成交量在股价分析中的重要作用,而且基于时间标度的股价模型都要一个隐含的假设:股票价格的调整是基于固定的日历时间间隔推进的。而实际上,股价的推进是按它自己的交易时间进行的,本文在股价调整的成交量进程时间假设的基础上,提出基于成交量标度的股价动力学分析的基本思想和基本方法,并通过对上证综合指数的实证研究证实了基于成交量标度的股价动力学分析方法的可行性和有效性。2成交量进程时间假设2.1成交量进程时间假设我们都是以固定的日历时间间隔记录经济世界和金融市场中的经济变量,比如宏观经济统计中的GDP年增长率,消费价格指数月变化率,金融市场中的股票价格的日收盘价。对这些金融经济变量的传统的时间序列分析都有一个隐含的假设:这些变量是以固定的日历时间进程推进的。但是,大量的研究发现,这些经济变量并不是以固定的日历时间进程推进的,而是以它自己的经济时间推进的。比如,经济周期就是一个独立的经济时间单位,即有关经济周期的变量的推进模式是从一个周期的一个阶段进入下一个阶段,而不是从一个月到下一个月。由于各个经济周期的时间长度不同,所以分析这些周期行为的合适的时*国家杰出青年科学基金(70025303)和教育部跨世纪优秀人才资助项目**吴文锋,1975年生,博士研究生,Email:wenfengwu@sina.com。吴冲锋,1962年生,博士,教授,博导。主要研究方向:金融工程与金融复杂性。成功经理人提供大量企业管理资源下载以知识铺就成功之道,用智慧编织美好人生间刻度不能基于月、季、年或者其它日历时间刻度,而应该是经济周期本身[1]。对于股票价格的研究,目前也都是使用固定的日历时间间隔记录的数据,即使是成交层次的数据,其时间间隔也是固定的,只不过从日频率变为小时、分钟而已。所以目前的股价的时间序列分析也都有一个隐含的假设:股票价格的调整是以固定的日历时间间隔推进的。但许多研究发现,股票价格的变化与市场上的信息有很大的关系,股票价格的调整并不是以我们记录数据用的固定的日历时间进程推进的,不是从这一日到下一日,从这一周到下一周,它也存在自己独立的时间推进进程,比如信息流进程[2、3]。正如华尔街上的谚语所说的,成交量推动股价的前进(Ittakesvolumetomoveprices),股价的调整是按照成交量进程推进的,我们把这称为成交量进程时间假设。2.2成交量进程时间假设的数学刻划在成交量进程时间假设下,令成交量进程时间刻度为,日历时间刻度为t,日历时间与成交量进程时间的转换式为)(tg。假设基于日历时间点观察到的变量表示成))((tg,可观察的离散日历时间变量ty表达成ty=))((tg。则称)1()()(tgtgtg为对应于日历时间1t到t这段时期内的成交量进程时间长度,称)(tg为成交量进程时间转换函数。通常假设)(tg满足下面几个条件:(1))(tg不依赖于将来的ty值;(2)成交量进程时间和日历时间以相同方向推进,∞)(≤0tg,t;(3))(tg可辨识,特别地,只是简单的时间线性转换函数是不合适的,因为时间线性转换只是对日历时间重新标定,如把季度转换成年。(4)一般令0)0(g,另外,在实证研究中令其均值为1,1)(tgE,这样一个单位的成交量进程时间平均对应于一个单位的日历时间。(5)为了参数估计的方便,假设转换函数为连续的。在成交量进程时间假设下,记:tVoltftg≤=),,()((1)其中:tVol为t时刻的成交量。满足上面5个条件的)(tg函数很多,不同的)(tg函数对应不同的成交量进程时间假设。特别地,当1)(tg时,即为传统的日历时间假设。在下面的实证研究中,我们采用简单的成交量进程时间线性转换函数:)(1)(zzctgt(2)其中:c为一常数;ttVolzLn。为了满足∞)(≤0tg,我们取)max/()min()(min111tntntVolVoltg,即取)(tg的最小值为实证样本区间内最大成交量与最小成交量比率的倒数,大于零且远远小于1。这样,我们求得:)min/()max/min1(tttzzVolVolc式(2)所表示的成交量进程时间转换函数)(tg,可满足上面提出的5个条件。成功经理人提供大量企业管理资源下载以知识铺就成功之道,用智慧编织美好人生3基于成交量标度的股价动力学分析3.1基于成交量标度的股价动力学分析的基本思想3.1.1传统的基于时间标度的股价动力学在金融市场中,有三个最基本的要素:时间、价格和成交量。对于这三个要素,时间为一个标度,用于记录价格和成交量,价格和成交量随着时间的前进而推进。通过时间的标度,我们得到两个时间序列(基于时间标度的序列):价格序列tP和成交量序列tVol。目前所有的理论研究和实务分析,围绕着这两个序列可分成三类:①单独研究价格序列tP的行为;②单独研究成交量序列tVol的行为;③研究tP和tVol之间的行为。例如:传统的资产定价模型,研究的就是股票价格tP的衍生变量收益率tr的结构和动力学关系。传统的基于时间标度的股价动力学可用下式(3)表示:tttIfP)(1(3)其中:tP为t时刻的股价;1tI表示t时刻之前可获取的信息,比如t时刻之前的股价;f表示股价与其前期信息之间的函数关系;t为随机误差项。式(3)刻划的股价动力学模型,比如当11ttPI,f为线性函数时,即为随机游走模型。自回归AR模型、移动平均MA模型、自回归移动平均ARMA模型等都是常用的线性动力学模型,非线性模型如神经网络模型等。3.1.2从时间标度到成交量标度由于按照时间标度得到的股价序列tP进行分析可能就会很困难,即式(3)中f为非线性函数。现在我们放弃原来的时间标度,而使用成交量标度来分析股价动力学:VolVolVolIfP)(1(4)其中:VolP为Vol时刻的股价;1VolI表示Vol时刻之前可获取的信息,比如Vol时刻之前的股价;f表示基于成交量标度的股价与其前期信息之间的函数关系;Vol为随机误差项。对于式(4),我们使用成交量标度进行股价动力学分析包括三个步骤:①标度成交量时刻;②构造基于成交量标度的股价序列;③进行基于成交量标度的股价动力学分析,即求解函数f。特别地,当成交量标度等于原来的时间标度时,基于成交量标度的股价就是原来的基于时间标度的股价。从时间标度到成交量标度,我们把按照日历时间推进的股价序列动力学分析转换到基于成交量标度的动力学分析,解决了两个问题:第一、从成交量标度考虑得到的价格序列自然地把成交量的信息融入到价格序列中,避免了原来的价格和成交量两个变量分离难以结合研究的问题。第二、按成交量推进的思想,也符合市场交易本身的推进方式。由于市场交易不按固定的日历时间推进,而是按其交易本身的时间推进,按影响交易的信息流过程推进,那么成交量作为市场重要事件的“信息含量”的度量标志,很自然地可以作为市场交易本身时间的一个替代。成功经理人提供大量企业管理资源下载以知识铺就成功之道,用智慧编织美好人生3.2基于成交量标度的股价动力学分析的基本方法3.2.1确定成交量标度由于放弃了传统的时间标度,我们需要重新给定股价的标度。标度确定的是否适当直接影响基于成交量标度的股价的行为特征。在成交量进程时间假设下,日历时间伸缩了,股价以成交量进程时间形式推进,在实证研究中我们使用成交量进程时间来确定成交量标度。因为成交量进程时间的均值等于1,即刚好等于一个平均时间刻度单位,那么成交量标度的单位设定为成交量进程时间的均值。下面说明如何求得成交量标度kVol时的时间标度t值。假设t时刻的成交量进程时间为)(tg,则t时刻的累积成交量进程时间为tssg1)(。kVol时的时间标度t值由下式中的i确定:∑1)(1isksgk(5)kVol时的时间标度t值就介于1i时刻和i时刻之间。3.2.2基于成交量标度的股价序列的构造由于现有存在的股价序列都是基于日历时间标度的,为了进行基于成交量标度的股价序列动力学分析,我们必须重新构造股价序列。就象时间标度一样,一般我们所取的标度值都是固定间隔的整数,而式(5)中累积成交量进程时间刚好等于整数值的时间标度往往介于两个整数时间标度之间。所以,基于成交量标度的股价就是这种介于两个整数时间标度之间的股票价格,在这种精确的时间标度的股价获取有困难的情况下(现存的可获取的数据库可能没有每笔的成交数据记录),我们常常采取替代的方式。如果我们对日数据进行实证研究,而无法得到每笔成交数据,那么可使用日数据的加权平均法。这里的权是成交量进程时间,而股价则用平均成交价替代。假设tVal为t日的成交金额,tVol为t日的成交总股数,则t日的平均成交价为:tttVolValP/=(6)记基于成交量标度的价格序列为}{sPT,假设前s个基于成交量标度的股价已经产生,下面求第s+1个价格。若下式满足:∑∑11)2()(≤)1()1()(≤ltktstgsstgs(7)则第(s+1)个成交量标度的股价1+sPT为:成功经理人提供大量企业管理资源下载以知识铺就成功之道,用智慧编织美好人生lltlkttkktPsPPs*g(t))1(*g(t)*g(t)∑∑11111(8)3.2.3基于成交量标度的股价动力学分析的基本方法在生成基于成交量标度的股价序列后,我们就可以进行动力学分析。传统的基于时间标度的股价动力学分析方法都可应用于基于成交量标度的股价序列,比如ARIMA模型分析、GARCH模型分析和人工神经网络分析等。4实证研究下面我们对上证综合指数进行实证分析,通过基于时间标度的股价收盘价序列和基于成交量标度的股价序列进行ARIMA模型比较分析,来说明基于成交量标度能降低股价行为的复杂性,从而简化股价行为的分析。数据样本:1998年1月1日至1999年12月31日的上证综合指数,共485个交易日4.1误差分析为了比较模型拟合样本序列的程度,我们使用下面几个误差项分析。设}{jY和}{jO分别表示实际值和模型的预测值,n为样本数。(1)均方差:∑12]/)[(1_njjjjYOYnerrormsv(9)(2)平均绝对值误差:∑1/)-(1_njjjjYOYnerroravg(10)(3)最大绝对值误差:jjjjYOYerror/)-(maxmax_(11)(4)最小绝对误差:jjjjYOYerror/)-(minmin_(12)(5)绝对值误差小于1.5%比例:otherwise:0015.0/)-(:1/_jjjjjjYOYpernpererrorper(13)4.2模型识别先按照前面的成交量进程时间