第六章测量误差理论(theoryoferrors)第六章测量误差理论(theoryoferrors)..................................................................................................................1§6-1观测误差(observationerror).......................................................................................................1§6-2衡量精度的标准...................................................................................................................................3一、中误差................................................................................................................................................3二、容许误差............................................................................................................................................4三、相对误差............................................................................................................................................4§6-3误差传播定律(lawofpropagationoferrors)...........................................................................5一、倍数函数............................................................................................................................................5二、和差函数............................................................................................................................................5三、线性函数............................................................................................................................................6四、一般函数............................................................................................................................................6§6-4算术平均值及其中误差.......................................................................................................................7§6-5加权平均值及其中误差.......................................................................................................................9思考与练习题..................................................................................................................................................10§6-1观测误差(observationerror)研究测量误差的来源、性质及其产生和传播的规律,解决测量工作中遇到的实际问题而建立起来的概念和原理的体系,称为测量误差理论。在实际的测量工作中发现:当对某个确定的量进行多次观测时,所得到的各个结果之间往往存在着一些差异,例如重复观测两点的高差,或者是多次观测一个角或丈量若干次一段距离,其结果都互有差异。另一种情况是,当对若干个量进行观测时,如果已经知道在这几个量之间应该满足某一理论值,实际观测结果往往不等于其理论上的应有值。例如,一个平面三角形的内角和等于180°,但三个实测内角的结果之和并不等于180°,而是有一差异。这些差异称为不符值。这种差异是测量工作中经常而又普遍发生的现象,这是由于观测值中包含有各种误差的缘故。任何的测量都是利用特制的仪器、工具进行的,由于每一种仪器只具有一定限度的精密度,因此测量结果的精确度受到了一定的限制。且各个仪器本身也有一定的误差,使测量结果产生误差。测量是在一定的外界环境条件下进行的,客观环境包括温度、湿度、风力、大气折光……等因素。客观环境的差异和变化也使测量的结果产生误差。测量是由观测者完成的,人的感觉器官的鉴别能力有一定的限度,人们在仪器的安置、照准、读数……等等方面都会产生误差。此外,观测者的工作态度、操作技能也会对测量结果的质量(精度)产生影响。观测值中存在观测误差有下列三方面原因:1、观测者由于观测者的感觉器官的鉴别能力的局限性,在仪器安置、照准、读数等工作中都会产生误差。同时,观测者的技术水平及工作态度也会对观测结果产生影响。2、测量仪器(surveyinginstrument)测量工作所使用的测量仪器都具有一定的精密度,从而使观测结果的精度受到限制。另外,仪器本身构造上的缺陷,也会使观测结果产生误差。3、外界观测条件(fieldobservationcondition)外界观测条件是指野外观测过程中,外界条件的因素,如天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周围建筑物的状况,以及太阳光线的强弱、照射的角度大小等。有风会使测量仪器不稳,地面松软可使测量仪器下沉,强烈阳光照射会使水准管变形,太阳的高度角、地形和地面植被决定了地面大气温度梯度,观测视线穿过不同温度梯度的大气介质或靠近反光物体,都会使视线弯曲。产生折光现象。因此,外界观测条件是保证野外测量质量的一个重要要素。观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素,通常称为观测条件。观测条件相同的各次观测,称为等精度观测。观测条件不同的各次观测,称为非等精度观测。任何观测都不可避免地要产生误差。为了获得观测值的正确结果,就必须对误差进行分析研究,以便采取适当的措施来消除或削弱其影响。观测误差按其性质,可分为系统误差、偶然误差和粗差。(1)系统误差。由仪器制造或校正不完善、观测员生理习性、测量时外界条件、仪器检定时不一致等原因引起。在同一条件下获得的观测列中,其数据、符号或保持不变,或按一定的规律变化。在观测成果中具有累计性,对成果质量影响显著,应在观测中采取相应措施予以消除。(2)偶然误差。它的产生取决于观测进行中的一系列不可能严格控制的因素(如湿度、温度、空气振动等)的随机扰动。在同一条件下获得的观测列中,其数值、符号不定,表面看没有规律性,实际上是服从一定的统计规律的。随机误差又可分两种:一种是误差的数学期望不为零称为“随机性系统误差”;另一种是误差的数学期望为零黍为偶然误差。这两种随机误差经常同时发生,须根据最小二乘法原理加以处理。(3)粗差。是一些不确定因素引起的误差,国内外学者在粗差的认识上还未有统一的看法,目前的观点主要有几类:一类是将粗差看用与偶然误差具有相同的方差,但期望值不同;另一类是将粗差看作与偶然误差具有相同的期望值,但其方差十分巨大;还有一类是认为偶然误差与粗差具有相同的统计性质,但有正态与病态的不同。以上的理论均是建立在把偶然误差和粗差均为属于连续型随机变量的范畴。还有一些学者认为粗差属于离散型随机变量。当观测值中剔除了粗差,排除了系统误差的影响,或者与偶然误差相比系统误差处于次要地位后,占主导地位的偶然误差就成了我们研究的主要对象。从单个偶然误差来看,其出现的符号和大小没有一定的规律性,但对大量的偶然误差进行统计分析,就能发现其规律性,误差个数愈多,规律性愈明显。例如,在相同的观测条件下,对358个三角形的内角进行了观测。由于观测值含有偶然误差,致使每个三角形的内角和不等于180°。设三角形内角和的真值为X,观测值为L,其观测值与真值之差为真误差Δ。用下式表示为:XLi(i=1,2,…,358)(6-1)由(6-1)式计算出358个三角形内角和的真误差,并取误差区间为0.2″,以误差的大小和正负号,分别统计出它们在各误差区间内的个数V和频率V/n,结果列于表6-1。表6-1偶然误差的区间分布误差区间d△″正误差负误差合计个数V频率V/n个数V频率V/n个数V频率V/n0.0~0.2450.126460.128910.2540.2~0.4400.112410.115810.2260.4~0.6330.092330.092660.1840.6~0.8230.064210.059440.1230.8~1.0170.047160.045330.0921.0~1.2130.036130.036260.0731.2~1.460.01750.014110.0311.4~1.640.01120.00660.0171.6以上0000001810.5051770.4953581.000从表6-1中可看出,最大误差不超过1.6″,小误差比大误差出现的频率高,绝对值相等的正、负误差出现的个数近于相等。通过大量实验统计结果证明了偶然误差具有如下特性:(1)在一定的观测条件下,偶然误差的绝对值不会超过一定的限度,(2)绝对值小的误差比绝对值大的误差出现的可能性大,(3)绝对值相等的正误差与负误差出现的机会相等,(4)当观测次数无限增多时,偶然误差的算术平均值趋近于零。即0][limnn(6-2)上述第四个特性说明,偶然误差具有抵偿性,它是由第三个特性导出的。如果将表6-1中所列数据用图6-1表示,可以更直观地看出偶然误差的分布情况。图中横坐标表示误差的大小,纵坐标表示各区间误差出现的频率除以区间的间隔值。当误差个数足够多时,如果将误差的区间间隔无限缩小,则图6-1中各长方形顶边所形成的折线将变成一条光滑的曲线,称为误差分布曲线。在概率论中,把这种误差分布称为正态分布。掌握了偶然误差的特性,就能根据带有偶然误差的观测值求出未知量的最可靠值,并衡量其精度。同时,也可应用误差理论来研究最合理的测量工作方案和观测方法。图6-1误差分布直方图§6-2衡量精度的标准衡量观测值精度的常用标准有以下几种一、中误差在等精度观测列中,各真误差平方的平均数的平方根,称为中误差,也称均方误差,即n][m(6-3)【例】设有两组等精度观测列,其真误差分别为第一组-3″、+3″、-1″、-3″、+4″、+2″、-1″、-4″;第二组+1″、-5″、-1″、+6″、-4″、0″、+3″、-1″。试求这两组观测值