1.2.1充分条件与必要条件(第一课时)教案(人教A版选修2-1)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

金太阳新课标资源网wx.jtyjy.com第1页共4页金太阳新课标资源网wx.jtyjy.com1.2.1充分条件与必要条件(第一课时)教案一、教材内容分析充分条件与必要条件是简易逻辑的重要内容,也是认识问题、研究问题的工具,是高考的热点内容.这节内容在“四种命题”的基础上,通过若干实例,概括出充分条件、必要条件的定义;明确了充分条件、必要条件和集合论之间的联系;总结出判断充分条件、必要条件的方法.教学重点是充分条件与必要条件的概念与判断;难点是对必要条件意义的理解.二、教学目标分析1、知识与技能(1)使学生能正确理解充分条件、必要条件的意义;(2)使学生会判断充分条件、必要条件.2、过程与方法(1)通过生活实例,引导学生联系四种命题间的相互关系,应用类比的方法来理解p与q的共存关系——p是q的充分条件,同时q是p的必要条件;(2)通过题组的设置,让学生发现充分条件、必要条件和集合间的包含关系之间的联系,使学生学会用联系的观点来看待问题.3、情感态度与价值观(1)通过设置问题串的方式,引发学生思考,使学生养成勤学善思的好习惯;(2)通过小组成员之间互相交流,创设生动活泼的学习氛围,激发学生学数学的热情,使学生享受学以致用的快乐.三、学习者特征分析通过对必修部分的学习,学生已经有了一定的知识储备,在教学中,可以利用学生熟悉的知识来辅助“充分条件与必要条件”的概念的教学,但不宜过难,以免阻碍学生对充分条件与必要条件的理解.四、教学策略的选择与设计(1)先行组织者策略:教师先举例子,让学生感受充分性和必要性的意义,再由学生抽象概括出充分条件与必要条件的定义;(2)以问题解决为主的教学策略:以问题串的方式引导学生思考,使学生在具体问题的解决过程中提炼方法,更深刻理解充分条件与必要条件的意义,充分体现教师“为金太阳新课标资源网wx.jtyjy.com第2页共4页金太阳新课标资源网wx.jtyjy.com思维而教”的教育理念.五、教学过程(一)设置情境,引入新知1.对充分条件、必要条件的意义的理解(1)通过与学生互动,构造出“若p,则q”形式的命题并使其为真命题,即pq;(2)p成立,充分保证了q成立,那么p是q的充分条件;(3)写出其逆否命题并判断出为真命题,即qp刎Þ;(4)提出问题:当p是q的充分条件时,q是p的什么条件?(5)理解学生预习情况,若对课本内容有不理解的,提出来大家共同解决;(6)提出问题:你能结合(1)中的命题,仿照课本的处理方式来解释必要条件的意义吗?;(7)当q不成立时,一定有p不成立;这就是说,要使p成立,必须满足q成立,那么q是p的必要条件.【设计意图】(1)举学生身边的例子,使学生觉得有趣,更容易接受,激发学生的学习热情,在轻松愉悦的氛围中自然地引出课题,有利于学生对充分条件、必要条件的意义的理解;(2)从逆否命题的角度来帮助学生理解必要条件的意义.2.充分条件与必要条件的定义定义:一般地,如果“若p,则q”为真命题,即pqÞ,那么p是q的充分条件,q是p的必要条件.(初步想法是让学生通过对例子的分析来抽象概括,现场需结合学情灵活把握)(二)巩固新知,深化概念3.充分条件与必要条件的判断例1在下列“若p,则q”形式的命题中,p是q的充分条件吗?q是p的必要条件吗?(1)若()fxx,则()fx在(,)上为增函数;(2)若直线a和b是异面直线,则a和b不相交;(3)若两个三角形全等,则这两个三角形的面积相等;(4)若x为无理数,则2x为无理数.金太阳新课标资源网wx.jtyjy.com第3页共4页金太阳新课标资源网wx.jtyjy.com【设计意图】(1)在课件中先显示前三个命题,让学生在熟悉的知识情境中判断充分条件和必要条件,加深对概念的理解;(2)强调判断充分条件、必要条件的关键点是分清p与q的推出关系;(3)通过对命题(4)的分析发现p不是q的充分条件,以此来充实学生对概念的认识.例2判断下列命题的真假:(1)1x¹是1x¹的充分条件;(2)若{2}Axx=,{3}Bxx=,则xAÎ的充分条件是xBÎ.【设计意图】(1)对比两个命题的说法,强调审题的重要性,要分清哪个是充分条件;(2)引导学生从集合的角度进一步理解充分条件与必要条件,即“小充分,大必要”;(3)总结出判断充分条件与必要条件的方法:○1定义;○2集合的角度.(三)牛刀小试,能力提升练习:判断下列问题中,p是q的充分条件吗?请说明理由.(1)p:四边形对角线相等,q:四边形是平行四边形;(2)已知圆C的方程是221xy+=,p:直线l是圆C的切线,q:点(0,0)O到直线l的距离等于1;(3)已知两个向量a,b,p:¹ab,q:¹ab;(4)p:0m,q:方程20xxm有实数根.【设计意图】(1)让学生进一步掌握判断充分条件、必要条件的方法;(2)以判断充分条件为载体再现易错点,帮助学生巩固知识点;(3)在这四个命题中依次满足“p是q的既不充分也不必要条件、充要条件、必要而不充分条件、充分而不必要条件”,为学生下节课的学习做好铺垫.思考题:1.已知p:0m,q:方程20xxm有实数根.○1p是q的必要条件吗?○2若不是,你能通过修改p,使得p是q的必要条件吗?变式:已知p:ma,q:方程20xxm有实数根.若p是q的必要条件,求实数a的取值范围.(先独立思考,再小组交流,最后展示成果)2.请写出“5ab+=”的一个充分条件.(若时间不够,留作课后作业)金太阳新课标资源网wx.jtyjy.com第4页共4页金太阳新课标资源网wx.jtyjy.com【设计意图】(1)通过这组练习,引导学生积极地思考,进一步理解概念;(2)强调从集合的角度来理解充分条件与必要条件;(3)通过小组活动,加强同学间的交流,激发学生的学习热情,形成良好的学习氛围.(四)总结提炼,推陈出新1.请你对本节课的学习内容进行小结.【设计意图】(1)引导学生养成总结的习惯;(2)再现课堂,小结提升,有助于学生明确学习的重点.2.引导学生从练习的四个命题中发现p与q之间存在以下四种关系:○1pq?且qp?;○2pqÞ且qpÞ;○3pq?且qpÞ;○4pqÞ且q?p.对于这四种关系我们应该如何描述呢?下节课,我们将解决这一问题.【设计意图】(1)巩固本节课的重点内容;(2)体现知识的连贯性,为下节课的引入埋下伏笔,同时激发学生的好奇心和求知欲,做好课前预习.【作业布置】一、写作业本上1.课本第10页练习4;第12页A组1(1)(2)、2(1)(2);2.(1)“函数fx是奇函数”是“00f”的充分条件吗?(2)“22xab+”是“2xab”的必要条件吗?3.反思:上完这节课我的主要收获是什么?还没有弄清楚的内容是什么?二、预习作业1.自主阅读课本第11页,尝试理解充要条件的概念;2.分析课本第11页例4的解答过程,体会p与q之间的关系;3.做第12页练习1,分析p与q之间充分性和必要性的关系可分为哪几种?

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功