11.2.1排列(第二课时)2010-5-6第六节高二(3)教室一、教学目标:1.知识与技能:熟练掌握排列数公式;熟悉并掌握一些分析和解决排列问题的基本方法;能运用已学的排列知识,正确地解决简单的实际问题2.过程与方法:通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,正确地解决的实际问题;3.情感、态度与价值观:会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;培养学生严谨的学习态度二、教学重点与难点教学重点:理解排列的概念,熟练掌握排列数公式,分析和解决排列问题的基本方法,对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中教学难点:分析和解决排列问题的基本方法,对于有约束条件排列问题的解答三、教学方法分析:分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.排列的应用题是本节的难点,通过本节例题的分析,注意培养学生解决应用问题的能力.在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.教学中指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.四、教学过程:一、复习引入:1奎屯王新敞新疆分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有1m种不同的方法,在第二类办法中有2m种不同的方法,……,在第n类办法中有nm种不同的方法奎屯王新敞新疆那么完成这件事共有12nNmmm种不同的方法奎屯王新敞新疆2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有1m种不同2的方法,做第二步有2m种不同的方法,……,做第n步有nm种不同的方法,那么完成这件事有12nNmmm种不同的方法奎屯王新敞新疆3.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....奎屯王新敞新疆4.排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示奎屯王新敞新疆5.排列数公式:(1)(1)(2)(1)mnAnnnnm(,,mnNmn)常用来求值,特别是,mn均为已知时(2)公式mnA=!()!nnm,常用来证明或化简奎屯王新敞新疆6.阶乘:!n表示正整数1到n的连乘积,叫做n的阶乘奎屯王新敞新疆规定0!1.7.练习:1计算:5699610239!AAA;11(1)!()!nmmAmn.2.解方程:3322126xxxAAA.二、讲解新课:例1某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:分3类:第一类用1面旗表示的信号有13A种;第二类用2面旗表示的信号有23A种;第三类用3面旗表示的信号有33A种,由分类计数原理,所求的信号种数是:12333333232115AAA,答:一共可以表示15种不同的信号奎屯王新敞新疆例2将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?分析:解决这个问题可以分为两步,第一步:把4位司机分配到四辆不同班次的公共汽车上,即从4个不同元素中取出4个元素排成一列,有44A种方法;第二步:把4位售票员分配到四辆不同班次的公共汽车上,也有44A种方法,利用分步计数原理即得分配方案的种数奎屯王新敞新疆3解:由分步计数原理,分配方案共有4444576NAA(种)答:共有576种不同的分配方案奎屯王新敞新疆例3从0到9这10个数字,可以组成多少个没有重复数字的三位数?解法一:对排列方法分步思考。位置分析法用分步计数原理:所求的三位数的个数是:1299998648AA奎屯王新敞新疆解法二:对排列方法分类思考。符合条件的三位数可以分成三类:元素分析法每一位数字都不是0的三位数有39A个,个位数字是0的三位数有29A个,十位数字是0的三位数有29A个,由分类计数原理,符合条件的三位数的个数是:322999648AAA.解法3:间接法.逆向思维法从0到9这10个数字中任取3个数字的排列数为310A,其中以0为排头的排列数为29A,因此符合条件的三位数的个数是32109648AA-29A.(有约束条件的排列问题)一般地对于有限制条件的排列应用题,可以有两种不同的计算方法:(l)直接计算法排列问题的限制条件一般表现为:某些元素不能在某个(或某些)位置、某个(或某些)位置只能放某些元素,因此进行算法设计时,常优先处理这些特殊要求.便有了:先处理特殊元素或先处理特殊位置的方法.这些统称为“特殊元素(位置)优先考虑法”.(2)间接计算法先不考虑限制条件,把所有的排列种数算出,再从中减去全部不符合条件的排列数,间接得出符合条件的排列种数.这种方法也称为“去杂法”.在去杂时,特别注意要不重复,不遗漏.例4.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?例5.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑)1360805919AA;解法二:(从特殊元素考虑)若选:595A;若不选:69A,则共有56995136080AA种;解法三:(间接法)65109136080AA奎屯王新敞新疆4例6.(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列77A=5040.(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——66A=720.(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步甲、乙站在两端有22A种;第二步余下的5名同学进行全排列有55A种,所以,共有22A55A=240种排列方法奎屯王新敞新疆(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A种方法,所以一共有25A55A=2400种排列方法奎屯王新敞新疆解法2:(排除法)若甲站在排头有66A种方法;若乙站在排尾有66A种方法;若甲站在排头且乙站在排尾则有55A种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有77A-662A+55A=2400种.说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑奎屯王新敞新疆备选例题例7.7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A种方法;再将甲、乙两个同学“松绑”进行排列有22A种方法.所以这样的排法一共有62621440AA种奎屯王新敞新疆(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有55A33A=720种奎屯王新敞新疆(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A种方法;将剩下的4个元素进行全排列有44A种方法;最后将甲、乙两个同学“松绑”进行排5列有22A种方法.所以这样的排法一共有25A44A22A=960种方法奎屯王新敞新疆解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A种方法,所以,丙不能站在排头和排尾的排法有960)2(225566AAA种方法奎屯王新敞新疆解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A种方法,再将其余的5个元素进行全排列共有55A种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有14A55A22A=960种方法.(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起奎屯王新敞新疆解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:342342288AAA(种)说明:对于相邻问题,常用“捆绑法”(先捆后松).例8.7位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)3600226677AAA;解法二:(插空法)先将其余五个同学排好有55A种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A种方法,所以一共有36002655AA种方法.(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有44A种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A种方法,所以一共有44A35A=1440种.说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).三、课堂练习:1.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?2.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?3.由数学1,2,3,4,5组成没有重复数学的五位数,其中偶数共有多少个?(48)4.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种5.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(B)(A)288个(B)240个(C)144个(D)126个66.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有(B)A.1440种B.960种C.720种D.480种7.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列奎屯王新敞新疆8某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?(2880)四、课堂小结1.排列的概念;由排列的定义可知,一是“取出元素”;二是“按照一定顺序排列”.排列与元素的顺序有关,也就是说与位置有关的问题才能归结为排列问题.当元素较少时,可以根据排列的意义写出所有的排列.2.排列数公式:(1)(2)(1)mnAnnnnm(,,mnNmn)公式特点:1)*