1.3.1二项式定理公主岭第三高级中学数学组——张鹤一.三维目标1.知识与技能:了解二项式定理的形成和过程,掌握二项式定理,会用其展开式的通项求某一项。2.过程与方法:了解二项式定理的推导过程进行类比,归纳推理推出二项式定理掌握二项式定理说明其应用。3.情感态度与价值观:体会知识间的递进关系。二.德育目标1.提高学生的归纳推理能力2.树立由特殊到一般的归纳知识。三,教学重点与难点1.教学重点:二项式定理及通项公式的掌握及运用奎屯王新敞新疆2.教学难点:运用多项式乘法及排列组合知识推导二项式定理的形成过程授课类型:新授课奎屯王新敞新疆课时安排:1课时奎屯王新敞新疆教具:多媒体、实物投影仪奎屯王新敞新疆内容分析:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习奎屯王新敞新疆教学过程:一、复习引入:⑴22202122222()2abaabbCaCabCb;⑵33223031222333333()33abaababbCaCabCabCb奎屯王新敞新疆⑶4()()()()()ababababab的各项都是4次式,即展开式应有下面形式的各项:4a,3ab,22ab,3ab,4b,展开式各项的系数:上面4个括号中,每个都不取b的情况有1种,即04C种,4a的系数是04C;恰有1个取b的情况有14C种,3ab的系数是14C,恰有2个取b的情况有24C种,22ab的系数是24C,恰有3个取b的情况有34C种,3ab的系数是34C,有4都取b的情况有44C种,4b的系数是44C,∴40413222334444444()abCaCabCabCabCb.二、讲解新课:二项式定理:01()()nnnrnrrnnnnnnabCaCabCabCbnN⑴()nab的展开式的各项都是n次式,即展开式应有下面形式的各项:na,nab,…,nrrab,…,nb,⑵展开式各项的系数:每个都不取b的情况有1种,即0nC种,na的系数是0nC;恰有1个取b的情况有1nC种,nab的系数是1nC,……,恰有r个取b的情况有rnC种,nrrab的系数是rnC,……,有n都取b的情况有nnC种,nb的系数是nnC,∴01()()nnnrnrrnnnnnnabCaCabCabCbnN,这个公式所表示的定理叫二项式定理,右边的多项式叫()nab的二项展开式,⑶它有1n项,各项的系数(0,1,)rnCrn叫二项式系数,⑷rnrrnCab叫二项展开式的通项,用1rT表示,即通项1rnrrrnTCab.⑸二项式定理中,设1,abx,则1(1)1nrrnnnxCxCxx奎屯王新敞新疆三、讲解范例:例1.(1)展开41(1)x.(2)展开61(2)xx例2.(1)求7)21(x的展开式的第四项的系数求9)1(xx的展开式中3x的系数练习(1)5)21(x展开式的第三项是___________(2)第三项的二项式系数是___________(3)第三项的系数是___________练习(1)求6)32(yx的展开式的第三项(2)求6)23(xy的展开式的第三项五、小结:二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点奎屯王新敞新疆六、课后作业:A层次:习题1.3T2、T3、B层次奎屯王新敞新疆习题T4(1)(2)若nxx)12(23的展开式中,若常数项存在,则n的最小值七、板书设计1.3.1二项式定理(1)01()()nnnrnrrnnnnnnabCaCabCabCbnN(2)二项式系数rnC(r=0,1,2........n)(3)1rnrrrnTCab(4)二项式定理中,1,abx1(1)1nrrnnnxCxCxx例1