Combining information from related regressions

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CombiningInformationfromRelatedRegressionsFrancescaDominici;GiovanniParmigiani;KennethH.Reckhow;RobertL.WolpertJournalofAgricultural,Biological,andEnvironmentalStatistics,Vol.2,No.3.(Sep.,1997),pp.313-332.StableURL:=1085-7117%28199709%292%3A3%3C313%3ACIFRR%3E2.0.CO%3B2-BJournalofAgricultural,Biological,andEnvironmentalStatisticsiscurrentlypublishedbyAmericanStatisticalAssociation.YouruseoftheJSTORarchiveindicatesyouracceptanceofJSTOR'sTermsandConditionsofUse,availableat://@jstor.org.:162007CombiningInformationFromRelatedRegressionsFrancescaDOMINICI,GiovanniPARMIGIANI,KennethH.RECKHOW,andRobertL.WOLPERTWeproposeandillustrateanapproachforcombininginformationfromseveralre-gressionstudies,eachconsideringonlyasubsetofthevariablesofinterest.OurapproachusesacombinationofBayesianhierarchicalmodelinganddataaugmentation.Hierarchi-calmodelsareaflexibletoolformodelingstudy-to-studyaswellaswithin-studyvari-ability.Dataaugmentationmethodsaddressfullytheuncertaintyresultingfrommissingdataandprovidevenuesforcombininginformationinawaythatpreservesthemean-ingoftheregressioncoefficientsacrossstudies.Wediscussindetailanonnal-nonnalmodel.wesuggestasimpleandefficientnumericalimplementationbasedonablockGibbssampler.andweprovideexplicitfullconditionaldistributionsforanarbitrarypatternofvariablesmissingbystudy.Wediscussanapplicationofourmodeltoinvestigatingthelevelofchlorophyll-ainwaterqualitymanagement.Chlorophyll-nisoneofthemostimportantindicatorsoflakewaterquality.Scientistshavedevelopedanumberandvarietyofforecastingmodelsrelatingchlorophyll-atonutrientssuchasphosphorusandnitrogen.Thesemodelsoftenhavetorelyonsparseinformationfrommultiplesources-inthiscaselakes.Westudytherelationshipamongchlorophyll-aandphosphorusin12northerntemperatelakesbyusingdatafromtheliterature.Animportantcovariateisnitrogen.whichisreportedonlyinsomeofthestudies.KeyWords:Hierarchicalmodels;Missingcovariates:Waterquality.1.INTRODUCTIONIfthereareseveralstudiesthataddressthesameresearchquestion,onemightbeinterestedincombiningtheinformationfromtheindividualstudiesinordertodrawover-allconclusionsabouttheresearchquestionofinterest.Thecombiningoftheindividualstudiesinorderlearnaboutthewholeisreferredtointheliteratureasmeta-analysis.Inthisarticlewefocusonmeta-analysisofregressionstudies.Inparticular,wediscussFrancescaDominiciisVisitingAssistantProfessor,DepartmentofBiostatistics,JohnsHopkinsUniversity.GiovanniParmigianiisAssistantProfessor,InstituteofStatisticsandDecisionSciencesandCenterforHealthPolicyResearchandEducation;RobertWolpertisAssociateProfessor,InstituteofStatisticsandDecisionSciences;andKennethReckhowisAssociateProfessor,NicholasSchooloftheEnvironmentandInstituteofStatisticsandDecisionSciences;DukeUniversity,Durham,NC27708-0251.ThisworkwascompletedwhileFrancescaDominiciwasavisitingscholarattheInstituteofStatisticsandDecisionSciences.01997AmericanSratisticalAssociariorzarzdthelnrernatiorzalBiometricSociehJortnialofAgricultrtral,Biological,andEnvironmenralStaristics,Volrtme2,Nrtniber3,Pages313-332howtocombineseveralmultivariateregressiondatasets,eachrecordingoverlapping,butpossiblydifferent,setsofvariables.Thisisacommonsituation:frequently,aninitialstudywillidentifyapotentiallyinterestingrelationshipbetweenvariables.Newstudiesarethenlikelytofollow,withmorecomprehensivedesignsandmorevariables,perhapsinanattempttoclarifypotentialconfoundingeffectsorbiasesintheinitialstudy.Interestinsimilarquestionsfromotheragencies,technologicalprogressinmeasuringpotentialexplanatoryvariables,andemergenceofnewandinterestingexplanatoryvariablesarealllikelytoleadtomorestudieswithyetdifferentsetsofvariables.Often,studieshavemultipleendpointsorusedifferentproxiesforresponsesofinterest.Inpractice,mul-tistudyregressionanalysescarriedouttosupportimportantpolicydecisionswillveryoftenrequirecombiningstudieswithdifferentvariables.Thegoalofthisarticleistoprovideaframeworkforhandlingsomeofthemosturgentmodelingproblemsarisinginthesituationjustdescribed.Examplesare1.combiningseveralstudieswithacommonresponsevariableandoverlapping,butdifferentcovariates;2.combiningstudieswiththesamecovariatesbutdifferentendpoints(responses),withtheaidofoneormorefurtherstudiesinvestigatingthedependencebetweentheendpoints;and3.combiningmultivariateanalyseswithdiffering

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功