3.确定下列排列的逆序数,并确定排列的奇偶性.(3)6573412;(4))2(246)12(135nn.解(3)65734125442217,奇排列;1(11)135(21)246(2)123121,2(4)nnnnnnn当kn4或14k时,为偶排列,当24kn或34k时,为奇排列.4.下列乘积中,那些可以构成相应阶数的行列式的项?(1)12432134aaaa;32414132(2)14342312aaaa;12312344不可以(3)5514233241aaaaa;4321512345(4)5512233241aaaaa.4321512325不可以5.确定下列五阶行列式的项所带的符号.(1)5541342312aaaaa;234153(1)(1)1(2)5513244231aaaaa.342151243551(1)(1)16.在函数10123()232112xxfxxxx中,3x的系数是什么?解10123()232112xxfxxxx,3x的系数是21341(1)(1)19.利用行列式的性质证明:(2)111111112222222233333333cakcblaabccakcblaabccakcblaabc;111111111222222222333111122223333111222333333331112223331112223333证ckcblacakcblacablacakcblacablacakcblacablacabcabcababcabcckcblackcblacalacalacalaabc10.计算行列式.(4)abcdadcbcdabcbad;(各行之和相等)1111100000010000000000解,abcdabcdbcdbcdadcbabcddcbdcbabcdcdababcddabdabcbadabcdbadbadbcddbbdabcddbacbdacbcddbbdabcdac(5)122222222232222n;21122212222222222201001223210100020222100200000102(解)nnn2(2)!n.(6)123123123123nnnnaaaaaaaaaaaaaaaa.231123231123123231123231解nininnininnnininniniaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa2323231231111nnnininaaaaaaaaaaaaa=)(11niina3.已知1012110311101254D,求(1)42322212AAAA;(2)41424344AAAA.122232421112110311101154AAAA=12223242MMMM41424344AAAA1012110311101111=41424344MMMM4.计算下列行列式:(1)1122331001100110011bbbbbb;解从第一行开始,依次把每一行加至下一行,得11112222323333312310010010011001001001101100100110011001110001010010001bbbbbbbbbbbbbbbbbb(2)1234111100100100aaaa,其中0ia;解第i行提出0ia,再把第i行的-1倍加到第一行,(i=2,3,4)41122422342342341233441000111110011001.1010101010011001iiiiaaaaaaaaaaaaaaaaaaaa(3)1111111111111111xxxx;解4D各行元素之的和相等,将各列加到第1列,得41111111111111111111111111111xxxxxxDxxxxx再将第1列的1倍、-1倍、1倍分别加到第2列、第3列、第4列,有4(41)424100100(1)11001000xxDxxxxxxx.(4)00010002002002000000002003;解根据行列式的定义,行列式是取自不同行不同列所有n个元素乘积的代数和.该行列式只有1220022003这一项非零.而这一项2003个元素的行下标按自然顺序排列,列下标的排列为20022001212003.所以(2002)(2001)2002200121200322003(1)2003!(1)2003!2003!.D(5)2222133311441111n;解222211111111133313330222222!.11441144003311111111000nnn(6)1221100001000001nnnnxxDxaaaaa.解一按第1列展开,得111100010010010001nnnnnnxDxDaxDax,由此递推得121nnnnnnDxDaxxDaa2211212112121.nnnnnnnnnnnxDxaaxDxaxaaaxaxaxa解二将第2,3,,n列依次乘以21,,,nxxx后都加到第1列,再按第1列展开得112211010000100.0001nniniinniinnixDaxxaxaaaa5.解方程1111111101121111(1)nxDxnx.解当0,1,2,,(2)xn时,行列式有两列相同,故其值为零.因此行列式等于(1)(2),Axxxn原方程变为(1)(2)0,Axxxn故其根为1210,1,,2.nxxxn6.已知1241224()2012136xxfxxxxx,证明0)(xf有小于1的正根.证因为01241224(0)020121036f;11241124(1)020111147f,多项式()fx在0,1连续,0,1可导,故存在(0,1),使()0f.