第二节、水中无机污染物的迁移转化一、颗粒物与水之间的迁移二、水中胶体颗粒物聚集的基本原理和方式三、溶解和沉淀四、氧化—还原五、配合作用无机污染物,特别是重金属和准金属等污染物,一旦进入水环境,不能被生物降解;主要通过吸附—解吸、沉淀—溶解、氧化—还原、配合作用、胶体形成等一系列物理化学作用进行迁移转化,参与和干扰各种环境化学过程和物质循环过程;最终以一种或多种形式长期存留在环境中,造成永久性的潜在危害。重点介绍重金属污染物在水环境中迁移转化的基本原理。一、颗粒物与水之间的迁移1、水中颗粒物的类别天然水中颗粒物主要包括五大类:矿物、金属水合氧化物、腐殖质、悬浮物、其他泡沫、表面活性剂等半胶体以及藻类、细菌、病毒等生物胶体。(1)非粘土矿物和粘土矿物:都是原生岩石在风化过程中形成的。非粘土矿物:天然水中常见为石英(SiO2)、长石(KalSi3O8)等,晶体交错,结实、颗粒粗,不易碎裂,缺乏粘结性(例如沙子主要成分为:SiO2)。粘土矿物:天然水中常见为云母、蒙脱石、高岭石,层状结构,易于碎裂,颗粒较细,具有粘结性,可以生成稳定的聚集体。其中的粘土矿物是天然水中最重要、最复杂的无机胶体,是天然水中具有显著胶体化学特性的微粒。主要成分为铝或镁的硅酸盐,具有片状晶体结构;粘土矿物的层状晶体基本由两种原子层构成,一种是硅氧四面体(硅氧片),另一种是铝氢氧原子层(水铝片),其间主要靠氢键连接,因此易于断裂开来。SiOOOOAlOOHOOHOHOH(2)金属水合氧化物:铝、铁、锰、硅等金属的水合氧化物在天然水中以无机高分子及溶胶等形态存在,在水环境中发挥重要的胶体化学作用。天然水中几种重要的容易形成金属水合氧化物的金属:铝在岩石和土壤中是大量元素,在天然水中浓度低,不超过0.1mg/L。铝水解,主要形态AL3+、Al(OH)2+、Al2(OH)24+、Al(OH)2+、Al(OH)3和Al(OH)4-,随pH值变化而改变形态浓度比例。一定条件下会发生聚合,生成多核配合物或无机高分子,最终生成[Al(OH)3]n的无定形沉淀物。铁是广泛分布元素,水解反应和形态与铝类似。在不同pH值下,Fe(Ⅲ)的存在形态是Fe3+、Fe(OH)2+、Fe(OH)2+、Fe2(OH)24+和Fe(OH)3。固体沉淀物可转化为FeOOH的不同晶形物。同样,它也可以聚合成为无机高分子和溶胶。锰与铁类似,其丰度虽然不如铁,溶解度比铁高,也是常见的水合金属氧化物。硅酸的单体H4SiO4,若写成Si(OH)4,则类似于多价金属,是一种弱酸,过量的硅酸将会生成聚合物,并可生成胶体以至沉淀物。重要的水合氧化物主要有:褐铁矿:Fe2O3﹒nH2O水化赤铁矿:2Fe2O3﹒H2O得到具有重要胶体作用的:针铁矿:Fe2O3﹒H2O水解[Al(OH)3]∞聚合无机高分子水铝石:Al2O3﹒H2O[FeOOH]∞聚合无机高分子三水铝石:Al2O3﹒3H2O[MnOOH]∞聚合无机高分子二氧化硅凝胶:SiO2﹒nH2O[Si(OH)4]∞聚合无机高分子水锰矿:Mn2O3﹒H2O所有的金属水合氧化物都能结合水中微量物质,同时其本身又趋向于结合在矿物微粒和有机物的界面上。(3)腐殖质:最早由土壤学研究者所发现,主要就是腐殖酸,例如富里酸、胡敏酸等。属于芳香族化合物,有机弱酸性,分子量从700-200000不等;带负电的高分子弱电解质,其形态构型与官能团(羧基、羰基、羟基)的离解程度有关。在pH较高的碱性溶液中或离子强度低的条件下,溶液中的OH-将腐殖质理解出的H+中和掉,因而分子间的负电性增强,排斥力增加,亲水性强,趋于溶解。在pH较低的酸性溶液(H+多,正电荷多),或有较高浓度的金属阳离子存在时,各官能团难于离解而电荷减少,高分子趋于卷缩成团,亲水性弱,因而趋于沉淀或凝聚。(4)水体悬浮沉积物:天然水体中各种环境胶体物质相互作用结合成聚集体,即为水中悬浮沉积物,它们可以沉降进入水体底部,也可重新再悬浮进入水中。一般悬浮沉积物是以矿物微粒,特别是粘土矿物为核心骨架,有机物和金属水合氧化物结合在矿物微粒表面上,成为各微粒间的粘附架桥物质,把若干微粒组合成絮状聚集体(聚集体在水体中的悬浮颗粒粒度一般在数十微米以下),经絮凝成为较粗颗粒而沉积到水体底部。(5)其他:湖泊中的藻类,污水中的细菌、病毒、废水排出的表面活性剂、油滴等,也都有类似的胶体化学表现,起类似的作用。2、水环境中颗粒物的吸附作用主要有表面吸附、离子交换吸附、专属吸附三种类型。(1)表面吸附:是一种物理吸附,其吸附过程不发生化学变化,发生的关键是胶体颗粒具有巨大的比表面积,因此胶体具有巨大的表面能。单位比表面积(ρ为密度)=面积(球)/重量==(cm2/g)表面能(又称为表面吸附能):任何分子之间均存在引力,在物体内部,某分子受到各方面作用力相等,因而处于平衡状态,但是在胶体表面上,分子受力不均匀(因为表面分子周围的分子数量不相等),因而产生了所谓的表面能。计算实例:某湖泊底泥ρ=2.65g/cm3,10%为直径D=1um(10-4cm)的颗粒物,求面积S=100m2,深度h=0.2m的底泥中,所有直径D=1um(10-4cm)的颗粒物比表面积?32344rrr332344rr65.2105.034解:先计算单位比表面积(ρ为密度)=面积(球)/重量===2.264×104(cm2/g)其次计算总体积=100m2×0.2m×10%=2m3=2×106cm3所以总重量=总体积×比重=2×106cm3×2.65g/cm3=5.3×106g所以总比表面积=5.3×106g×2.264×104(cm2/g)=12×1010cm3=12万m3由于胶体具有巨大的比表面和表面能,因此固液界面存在表面吸附作用,胶体表面积愈大,所产生的表面吸附能也愈大,胶体的吸附作用也就愈强,它是属于一种物理吸附。一般么蒙脱石单位比表面积=800m2/g左右,伊利石=30-80m2/g,高岭石=10-50=800m2/g,腐殖质=400-900m2/g,无定型氢氧化铁[Fe(OH)3]∞=300m2/g左右。(2)离子交换吸附:是一种物理化学吸附,主要是胶体对各种介质离子的吸附,曾有人称之为“极性吸附”。一般情况下,环境中大部分胶体(包括粘土矿物、有机胶体、含水氧化物等)带负电荷,容易吸附各种阳离子,在吸附过程中,胶体每吸附一部分阳离子,同时也放出等量的其他阳离子,因此把这种吸附称为离子交换吸附,它属于物理化学吸附。需要说明的是,这种负电荷一部分是永久负电荷,主要是由于晶格中离子的同晶替代造成的,例如硅氧四面体中的Si4+被Al3+所取代,或者铝氢氧八面体中的Al3+被Mg2+所取代等,都会产生这种永久负电荷。另一部分为可变电荷,主要随着环境pH的改变而发生改变,原因是Si-OH中的H+在碱性溶液中的离解。Si-OH+OH-=Si-O-+H2O。特征:这种吸附是一种可逆反应,能够迅速达到平衡。不受温度影响,酸碱条件下均可进行,其交换吸附能力与溶质的性质、浓度及吸附剂性质等有关。对于那些具有可变电荷表面的胶体,当体系pH高时,也带负电荷并能进行交换吸附。离子交换吸附对于从概念上解释胶体颗粒表面对水合金属离子的吸附是有用的,但是对于那些在吸附过程中表面电荷改变符号,甚至可使离子化合物吸附在同号电荷的表面上的现象无法解释。因此,近年来有学者提出了专属吸附作用。(3)专属吸附:是指吸附过程中,除了化学键的作用外,尚有加强的憎水键和范德华力或氢键在起作用。专属吸附作用不但可使表面电荷改变符号,而且可使离子化合物吸附在同号电荷的表面上。在水环境中,配合离子、有机离子、有机高分子和无机高分子的专属吸附作用特别强烈。例如,简单的Al3+、Fe3+高价离子并不能使胶体电荷因吸附而变号,但其水解产物却可达到这种效果,这就是发生专属吸附的结果。水合氧化物胶体对重金属离子有较强的专属吸附作用,这种吸附作用发生在胶体双电层的Stern层中,被吸附的金属离子进入Stern层后。不能被通常提取交换性阳离子的提取剂提取,只能被亲和力更强的金属离子取代,或在强酸性条件下解吸。专属吸附的另一特点是它在中性表面甚至在与吸附离子带相同电荷符号的表面也能进行吸附作用。例如,水锰矿对碱金属(K、Na)的吸附作用属于离子交换吸附,而对于Co、Cu、Ni等过渡金属元素离子的吸附则属于专属吸附。下表列出水合氧化物对重金属离子的专属吸附机理与交换吸附的区别。水合氧化物对金属离子的专属吸附与非专属吸附的区别项目非专属吸附专属吸附发生吸附的表面净电荷的符号金属离子所起的作用吸附时所发生的反应发生吸附时要求体系的pH值吸附发生的位置—反离子阳离子交换零电位点扩散层—、0、+配位离子配位体交换任意值内层注:本表摘自陈静生主编,1987。3、吸附等温线吸附等温线和等温式:吸附是指溶液中的溶质在界面层浓度升高的现象。水体中颗粒物对溶质的吸附是一个动态平衡过程,在固定的温度条件下,当吸附达到平衡时,颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度(c)之间的关系,可用吸附等温线来表达。水体中常见的吸附等温线有三类:Henry型、Freundlich型、Langmuir型,简称为H、F、L型。H型等温线为直线型,其等温式为:G=kC式中:k—分配系数。该等温式表明溶质在吸附剂与溶液之间按固定比值分配。F型等温式为:G=kC1/n若两侧取对数,则有:1lglglgGkcn以lgG对lgc作图可得一直线。lgk为截距,因此,k值是c=1时的吸附量,它可以大致表示吸附能力的强弱。为斜率,它表示吸附量随浓度增长的强度。该等温线不能给出饱和吸附量。L型等温式为:G=G0c/(A+c)式中:G0——单位表面上达到饱和时间的最大吸附量;A——常数。G对c作图得到一条双曲线,其渐近线为G=G0,即当c→∞时,G→G0。在等温式中A为吸附量达到时溶液的平衡浓度。转化为:1/G=1/G0+(A/G0)(1/c)n1以对作图,同样得到一直线。等温线在一定程度上反映了吸附剂与吸附物的特性,其形式在许多情况下与实验所用溶质浓度区段有关。当溶质浓度甚低时,可能在初始区段中呈现H型,当浓度较高时,曲线可能表现为F型,但统一起来仍属于L型的不同区段。影响吸附作用的因素有以下几种:首先是溶液pH值对吸附作用的影响。在一般情况下,颗粒物对重金属的吸附量随pH值升高而增大。当溶液pH超过某元素的临界pH值时,则该元素在溶液中的水解、沉淀起主要作用。吸附量(G)与pH、平衡浓度(C)之间的关系可用下式表示:G=A·C·10BpH式中:A、B—常数。G1c1其次是颗粒物的粒度和浓度对重金属吸附量的影响。颗粒物对重金属的吸附量随粒度增大而减少,并且,当溶质浓度范围固定时,吸附量随颗粒物浓度增大而减少。此外,温度变化、几种离子共存时的竞争作用均对吸附产生影响。4、解吸作用(以沉积物中重金属的释放为例)重金属从悬浮物或沉积物中重新释放属于二次污染问题,不仅对于水生生态系统,而且对于饮用水的供给都是很危险的。诱发释放的主要因素有:(1)pH值降低:pH值降低,导致碳酸盐和氢氧化物的溶解,H+的竞争作用增加了金属离子的解吸量,H+被吸附而导致一些带正电荷的金属离子被释放。在一般情况下,沉积物中重金属的释放量随着反应体系pH的升高而降低。其原因既有H+离子的竞争吸附作用,也有金属在低pH条件下致使金属难溶盐类以及配合物的溶解等。因此,在受纳酸性废水排放的水体中,水中金属的浓度往往很高。(2)还原条件增强:还原条件下,Fe、Mn等的氧化物溶解,其吸附的金属离子被释放出来,因此在湖泊、河口及近岸沉积物中一般均有较多的耗氧物质,使一定深度以下沉积物中的氧化还原电位急剧降低,并将使铁、锰氧化物可部分或全部溶解,故被其吸附或与之共沉淀的重金属离子也同时释放出来。(3)盐浓度升高:盐度变化可以增加离子的吸附交换量,碱金属和碱土金属阳离子可将被吸附在固体颗粒上的其他金属离