1第一章函数·极限·连续一.填空题1.已知,__________)(,1)]([,sin)(2xxxfxxf则定义域为___________.2.设ataxxdttexx1lim,则a=________.3.nnnnnnnnn2222211lim=________.4.已知函数01)(xf1||1||xx,则f[f(x)]_______.5.)3(limnnnnn=_______.6.设当xbxaxexfxx为时11)(,0的3阶无穷小,则.___________,ba7.xxxx1sin1cotlim0=______.8.已知Annnkkn)1(lim1990(0),则A=______,k=_______.二.选择题1.设f(x)和(x)在(-,+)内有定义,f(x)为连续函数,且f(x)0,(x)有间断点,则(a)[f(x)]必有间断点(b)[(x)]2必有间断点(c)f[(x)]必有间断点(d))()(xfx必有间断点2.设函数xexxxfsintan)(,则f(x)是(a)偶函数(b)无界函数(c)周期函数(d)单调函数3.函数2)2)(1()2sin(||)(xxxxxxf在下列哪个区间内有界(a)(-1,0)(b)(0,1)(c)(1,2)(d)(2,3)4.当11211,1xexxx函数时的极限(a)等于2(b)等于0(c)为(d)不存在,但不为25.极限222222)1(12325213limnnnn的值是(a)0(b)1(c)2(d)不存在6.设8)1()1()1(lim502595xaxxx,则a的值为(a)1(b)2(c)58(d)均不对7.设)23()5)(4)(3)(2)(1(limxxxxxxx,则,的数值为(a)=1,=31(b)=5,=31(c)=5,=531(d)均不对8.设232)(xxxf,则当x0时(a)f(x)是x的等价无穷小(b)f(x)是x的同阶但非等价无穷小(c)f(x)比x较低价无穷小(d)f(x)比x较高价无穷小9.设6)31)(21)(1(lim0xaxxxx,则a的值为(a)-1(b)1(c)2(d)310.设02)1()21ln()cos1(tanlim2202caedxcxbxaxx,其中,则必有(a)b=4d(b)b=-4d(c)a=4c(d)a=-4c三.计算题1.求下列极限(1)xxxex1)(lim(2)xxxx)1cos2(sinlim(3)310sin1tan1limxxxx2.求下列极限(1)323112arcsin)11ln(limxxx3(2)xxx220cot1lim3.求下列极限(1))1(lnlimnnnnn(2)nxnxnee11lim(3)nnnnba2lim,其中a0,b04.设0cos1010)cos1(2)(022xdttxxxxxxfx试讨论)(xf在0x处的连续性与可导性.5.求下列函数的间断点并判别类型(1)1212)(11xxxf(2)11sincos2)2()(2xxxxxf00xx6.讨论函数xexxxf1sin)(00xx在x=0处的连续性.7.设f(x)在[a,b]上连续,且ax1x2…xnb,ci(I=1,2,3,…,n)为任意正数,则在(a,b)内至少存在一个,使nnccccxfcxfcf212211)()()(.8.设f(x)在[a,b]上连续,且f(a)a,f(b)b,试证在(a,b)内至少存在一个,使f()=.49.设f(x)在[0,1]上连续,且0f(x)1,试证在[0,1]内至少存在一个,使f()=.10.设f(x),g(x)在[a,b]上连续,且f(a)g(a),f(b)g(b),试证在(a,b)内至少存在一个,使f()=g().11.证明方程x5-3x-2=0在(1,2)内至少有一个实根.12.设f(x)在x=0的某领域内二阶可导,且0)(3sinlim230xxfxxx,求)0(''),0('),0(fff及203)(limxxfx.5第二章导数与微分一.填空题1.设)('31)()(lim0000xfxxfxkxfx,则k=________.2.设函数y=y(x)由方程0)cos(xyeyx确定,则dxdy______.3.已知f(-x)=-f(x),且kxf)('0,则)('0xf______.4.设f(x)可导,则xxnxfxmxfx)()(lim000_______.5.xxxf11)(,则)()(xfn=_______.6.已知xxfdxd112,则21'f_______.7.设f为可导函数,)]}([sinsin{xffy,则dxdy_______.8.设y=f(x)由方程1)cos(2exyeyx所确定,则曲线y=f(x)在点(0,1)处的法线方程为_______.二.选择题1.已知函数f(x)具有任意阶导数,且2)]([)('xfxf,则当n为大于2的正整数时,f(x)的n阶导数是(a)1)]([!nxfn(b)1)]([nxfn(c)nxf2)]([(d)nxfn2)]([!2.设函数对任意x均满足f(1+x)=af(x),且)0('fb,其中a,b为非零常数,则(a)f(x)在x=1处不可导(b)f(x)在x=1处可导,且)1('fa(c)f(x)在x=1处可导,且)1('fb(d)f(x)在x=1处可导,且)1('fab3.设||3)(23xxxxf,则使)0()(nf存在的最高阶导数n为(a)0(b)1(c)2(d)34.设函数y=f(x)在点x0处可导,当自变量x由x0增加到x0+x时,记y为f(x)的增量,dy为f(x)的微分,xdyyx0lim等于(a)-1(b)0(c)1(d)65.设baxxxxf1sin)(200xx在x=0处可导,则(a)a=1,b=0(b)a=0,b为任意常数(c)a=0,b=0(d)a=1,b为任意常数三.计算题1.')]310ln[cos(2yxy,求2.已知f(u)可导,')][ln(2yxaxfy,求3.已知200sincos22ytdtdtexyt,求'y.4.设y为x的函数是由方程xyyxarctanln22确定的,求'y.四.已知当x0时,f(x)有定义且二阶可导,问a,b,c为何值时cbxaxxfxF2)()(00xx二阶可导.五.已知)0(1)()(22nfxxxf,求.六.设xxyln,求)1()(nf.7第三章一元函数积分学(不定积分)一.求下列不定积分:1.dxxxx11ln1122.cxxxxdxxdxxxx2211arctan2111arctan11arctan11arctan113.dxxxxxxcos1sin1)cos1(1sincos24.)1(8xxdx5.dxxxxxxxdxxxxcossin121)cos(sin21)cossin1(21cossin1sin1二.求下列不定积分:1.22)1(22xxxdx2.241xxdx3.221)12(xxdx4.222xadxx(a0)5.dxx32)1(6.dxxx42187.dxxxx1122三.求下列不定积分:1.dxeeeexxxx12432.)41(2xxdx四.求下列不定积分:1.dxxx1005)2(2.41xxdx五.求下列不定积分:1.xdxx2cos2.xdx3sec3.dxxx23)(ln4.dxx)cos(ln5.dxxxxxxddxxxxxdxxxx2sin812sin812sin812cos2sin2cos81sin2cos22233434cxxxxdxxx2cot412sin8122sin412sin81222六.求下列不定积分:1.dxxxxx222)1()1ln(92.dxxxx21arctan3.dxeexx2arctan七.设xexxxxxf)32(3)1ln()(2200xx,求dxxf)(.八.设xbxaefxcossin)(',(a,b为不同时为零的常数),求f(x).九.求下列不定积分:1.dxxxx)32(3322.dxxxx)13()523(2323.dxxxx221)1ln(4.)11ln()11(222xxxxdx十.求下列不定积分:1.dxxxx)1(arctan22.dxxx1arcsin3.dxxxxx22211arcsin104.dxxxx)1(arctan22十一.求下列不定积分:1.dxxx2342.xax223.dxeeexxx21)1(4.dxxaxx2(a0)十二.求下列不定积分:1.xxdxcos1sin2.dxxxcos2sin23.dxxxxxcossincossin十三.求下列不定积分:1.dxxxx12.dxeexx113.dxxxx1arctan111第三章一元函数积分学(定积分)一.若f(x)在[a,b]上连续,证明:对于任意选定的连续函数(x),均有0)()(badxxxf,则f(x)0.二.设为任意实数,证明:20)(tan11dxxI=4)(cot1120dxx.三.已知f(x)在[0,1]上连续,对任意x,y都有|f(x)-f(y)|M|x-y|,证明nMnkfndxxfnk21)(110四.设40tanxdxInn,n为大于1的正整数,证明:)1(21)1(21nInn.五.设f(x)在[0,1]连续,且单调减少,f(x)0,证明:对于满足01的任何,,有dxxfdxxf)()(012六.设f(x)在[a,b]上二阶可导,且)(''xf0,证明:2)()(bafabdxxfba七.设f(x)在[0,1]上连续,且单调不增,证明:任给(0,1),有100)()(dxxfdxxf八.设f(x)在[a,b]上连续,)('xf在[a,b]内存在而且可积,f(a)=f(b)=0,试证:badxxfxf|)('|21|)(|,(axb)九.设f(x)在[0,1]上具有二阶连续导数)(''xf,且0)(0)1()0(xfff,,试证:4)()(''10dxxfxf十.设f(x)在[0,1]上有一阶连续导数,且f(1)-f(0)=1,试证:1)]('[102dxxf十一.设函数f(x)在[0,2]上连续,且20)(dxxf=0,20)(dxxxf=a0.证明:[0,2],使|f()|a.13第三章一元函数积分学(广义积分)一.计算下列广义积分:(1)2031)1(dxeexx(2)022)4)(1(1dxxx(3)232)1(xdx(4)10)sin(lnd