EXTENSIONSOFMODULESOVERSCHURALGEBRAS,SYMMETRICGROUPSANDHECKEALGEBRASSTEPHENR.DOTY,KARINERDMANN,ANDDANIELK.NAKANOAbstract.Westudytherelationbetweenthecohomologyofgen-erallinearandsymmetricgroupsandtheirrespectivequantiza-tions,usingSchuralgebrasandstandardhomologicaltechniquestobuildappropriatespectralsequences.Asourmethods tinsideamuchmoregeneralcontextwithinthetheoryof nite-dimensionalalgebras,wedevelopourresults rstinthatgeneralsetting,andthenspecializetotheabovesituations.Fromthisweobtainnewproofsofseveralknownresultsinmodularrepresentationtheoryofsymmetricgroups.Moreover,wereducecertainquestionsaboutcomputingextensionsforsymmetricgroupsandHeckealgebrastoquestionsaboutextensionsforgenerallineargroupsandtheirquantizations.1.Introduction1.1.Webeginbyexplainingourmotivation.LetEbethevectorspaceofn-dimensionalcolumnvectorsovera eldk.Weassumethatkisin nitejustforthisintroduction.ThegenerallineargroupGLnoverkactsnaturallyonEbymatrixmultiplication,andthisactionextendstoanactiononthetensorpowerE d,byactingthesameineachtensorposition.Thisactioncommuteswiththeactionofthesymmetricgroup d,actingbyplace-permutation.Butmuchmoreistrue.LetkGLn !End(E d) k dbethecorrespondingrepresentations,extendedbylinearitytoeachgroupalgebra.Thentheimageofeachrepresentationisthecompletecentralizeroftheother,i.e.im =End d(E d);im =EndGLn(E d):Thisdouble-centralizertheorem,whichgoesbacktoSchur[S2]inzerocharacteristicandDeConciniandProcesi[DP]ingeneral,hashadaDate:June2000.ThethirdauthorwaspartiallysupportedbyNSFgrantDMS-9800960.12STEPHENR.DOTY,KARINERDMANN,ANDDANIELK.NAKANOstrongimpactonthedeepinteractionsbetweentherepresentationthe-oriesofgenerallinearandsymmetricgroups,andisinsomesenseourstartingpoint.Amaingoalofthispaperistoexploittheabovesetuptorelatethecohomologyofthetwogroups.WedothisbymeansoftheSchuralgebraS(n;d),whichcanbede nedastheimageofthemap above.Themodulesforthis nite-dimensionalalgebraarepreciselytheGLn-moduleswhosecoe cientsdependonthematrixcoordinatefunctionsofGLnashomogeneouspolynomialsoftotaldegreed.ManyinterestingmodulesforGLn(e.g.Weylmodules,simplemodules)arehomogeneousorarecloselyrelatedtohomogeneousmodules.Whennissu cientlylarge(n d)themoduleE disaprojectivesummandofthealgebraA=S(n;d),i.e.thereisanidempotente2AsuchthatAe =E d[Gr1,(6.4f)].ItfollowsimmediatelyfromthedoublecentralizerpropertythateAeisisomorphicwithk d.ThusonehasanexactcovariantfunctorF(sometimescalledthe\Schurfunctor)goingfromA-modtoeAe-mod,whichisgivenbyM7!eM.EversincethepublicationofGreen’smonograph[Gr1],thisfunctorhasbeenexploitedtorelatethemodularrepresentationtheoryofGLntothatof d;itsuseincharacteristiczerogoesallthewaybacktoSchur’sthesis[S1].Everythingwehavesaidthusfaradmitsofquantization,andindeedwearealsointerestedinstudyingtherelationbetweenthecohomologyofquantumgenerallineargroupsandHeckealgebrasinTypeA.HeretheSchuralgebramustbereplacedbyitsquantization,theq-SchuralgebraintroducedbyDipperandJames[DJ1,DJ2].Thuswearriveatourgeneralcontext:wehaveanidempotente6=1inanarbitrary nite-dimensionalalgebraA,andwewanttorelateextensionsinA-modtoextensionsineAe-mod.WedothisbymeansofthetwonaturaladjointsGHom,G totheSchurfunctorFarisingfromtheidenti cationseM =HomA(Ae;M) =eA AMandtheassociatedGrothendieckspectralsequenceswhichareimplicitintheinteractionsofthesefunctors.Wethenobtainseveralapplica-tions,inseveralcasesobtainingnewproofsofresultsobtainedearlierbymoreadhocmethods.Inasense,itseemsthatthesestandardhomologicalmethodshavebeenoverlookedintheliteratureconcernedwiththerelationbetweensymmetricandgenerallineargroups,sooneEXTENSIONSOFMODULES3ofourpurposesistopointouttheapplicabilityofthesetoolstosuchquestions.Anearlierpreprintversionofthispaperhasbeencirculatedforsometime,andnowthereareseveralpaperswhichrelyontechniquesandreductionsfromthisonetoobtainnewresultsaboutsymmetricgroupcohomology.In[KN],extensionsfortheSchuralgebrasarecomparedwithcorrespondingextensionsforthesymmetricgroupinacertainexplicitrangeofdegrees.ThestabilityresultsobtainedthereprovideaeasyproofofaconjecturemadebyBurichenko,KleshchevandMartin[BKM]onthecohomologyofdualSpechtmodules.Otherapplicationsaregivenin[DN].Weshouldaddthattheuseofquasi-hereditaryalgebrastocomputegroupcohomologyalsoappearsinrecentworkofBendel,Pillenandthesecondauthor[BNP].Inthatpaper,itisshownthatthattherearespectralsequenceswhichstartwithmodulesinaboundedcategoryofG-moduleswhereGisareductivealgebraicgroupG,andconvergetotheextensionsoverthe niteChevalleygroupG(Fq).1.2.Summary.Thepaperisorganizedasfollows.Inthenextsectionweconsiderthegeneralsituationofanarbitrary nite-dimensionalalge-braAandidempotente2A.WeconstructtheGrothendieckspectralsequencesmentionedabove.Theresulting ve-termexactsequencesgiverelationshipsbetweenExt1-groupsinthecategoriesofA-modulesandeAe-modules.Inparticular,todescribeExt1inthecategoryofeAe-modules,oneneedstocomputeimagesundertheadjointsGHomandG oftheSchurfunctorF.Inthethirdsectionweinvestigatepropertiesoftheseadjointfunc-tors.WegiveadescriptionoftheimageG(N)foraneAe-moduleNwhereG=GHomo