空间点、直线、平面之间的位置关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.1.1平面长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。实物引入、揭示课题观察活动室里的地面,它呈现出怎样的形象?实例引入1、平面的含义以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的。平面是没有厚薄的,可以无限延伸,这是平面最基本的属性。奎屯王新敞新疆常见的桌面,黑板面,平静的水面等都是平面的局部形象;一个平面把空间分成两部分,一条直线把平面分成两部分奎屯王新敞新疆2、平面的画法及表示①平面的画法:在立体几何中,常用平行四边形表示平面,当平面水平放置时,通常把平行四边形的锐角画成450,且横边长画成邻边长的两倍;DCAB画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画。αβαβ②、平面的表示方法DCAB平面ABCD平面AC或平面BDADCBEF平面记作:平面记作:平面常把希腊字母α、β、γ等写在代表平面的平行四边形的一个角上,如平面α、平面β等;也可以用代表平面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.3、点、直线与平面的关系平面内有无数个点,平面可以看成点的集合.ABα点A在平面α内,记作A∈αB··A·..lm点B在平面α外,记作Bα直线l在平面α内表示为lα直线l不在平面α内表示为lα1、判断下列各题的说法正确与否,在正确的说法的题号后打,否则打:1、一个平面长4米,宽2米;()2、平面有边界;()3、一个平面的面积是25cm2;()4、菱形的面积是可以计算的;()5、一个平面可以把空间分成两部分.()练习4、平面的基本性质如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l与平面α有两个公共点呢?实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.图形语言符号语言B··A·..lBAlBlAl公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用途:可以用来判断直线是否在平面内.4、平面的基本性质在生产、生活中,人们经过长期观察与实践,总结出关于平面的一些基本性质,我们把它作为公理.这些公理是进一步推理的基础.生活中经常看到用三角架支撑照相机.或测量用的平板仪等等……4、平面的基本性质公理2过不在一条直线上的三点,有且只有一个平面.ACB存在性唯一性作用:确定平面的主要依据.不再一条直线上的三个点A、B、C所确定的平面,可以记成“平面ABC”.4、平面的基本性质补充3个推论:4、平面的基本性质推论1:经过一条直线与直线外一点,有且只有一个平面。推论2:经过两条平行直线,有且只有一个平面。推论3:经过两条相交直线,有且只有一个平面。B把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?4、平面的基本性质观察长方体,你能发现长方体的两个相交平面有没有公共直线吗?ABABCDCD这条公共直线B’C’叫做这两个平面A’B’C’D’和平面BB’C’C的交线.另一方面,相邻两个平面有一个公共点,如平面A’B’C’D’和平面BB’C’C有一个公共点B’,经过点B有且只有一条过该点的公共直线B’C’.4、平面的基本性质公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.,.PlPl作用:①判断两个平面相交的依据.②判断点在直线上.lP4、平面的基本性质符号表示为:图形表示为:例1如图,用符号表示下列图形中点、直线、平面之间的位置关系.alABalPb(1)(2)解:在(1)中,,,.laAaB,,,,.labalPblP在(2)中,例题示范课堂练习:课本P44练习1、2、3、4补练:①有三个公共点的两个平面重合②梯形的四个顶点在同一个平面内③三条互相平行的直线必共面④四条线段顺次首尾连接,构成平面图形2、下列命题正确的是()A、两条直线可以确定一个平面B、一条直线和一个点可以确定一个平面C、空间不同的三点可以确定一个平面D、两条相交直线可以确定一个平面1、下列命题中,正确的命题是()A、圆上三点可以确定一个平面B、圆心和圆上两点可确定一个平面C、四条平行直线不能确定五个平面D、空间四点中,若四点不共面,则任意三点不共线4、若给定空间三条直线共面的条件,这四个条件中不正确的是()①三条直线两两相交②三条直线两两平行③三条直线中有两条④平行三条直线共点3、在空间中,下列命题错误的是()在正方体中,判断下列命题是否正确,并说明理由:1111DCBAABCD1AC①直线在平面内;BBCC11A1AB1BC1CD1D错误随堂练习在正方体中,判断下列命题是否正确,并说明理由:1111DCBAABCD②设正方形ABCD与的中心分别为O,,则平面与平面的交线为;1111DCBA1OCCAA11DDBB111OOA1AB1BC1CD1DO1O正确随堂练习在正方体中,判断下列命题是否正确,并说明理由:1111DCBAABCD③由点A,O,C可以确定一个平面;A1AB1BC1CD1DO错误随堂练习在正方体中,判断下列命题是否正确,并说明理由:1111DCBAABCD④由确定的平面是;11,,BCA11BADC⑤由确定的平面与由确定的平面是同一个平面.11,,BCADCA,,1A1AB1BC1CD1D正确正确随堂练习空间图形文字叙述符号表示知识小结实例引入平面平面的画法和表示点和平面的位置关系平面三个公理2.1.2空间中两直线的位置关系判断下列命题对错:1、如果一条直线上有一个点在一个平面上,则这条直线上的所有点都在这个平面内。()2、将书的一角接触课桌面,这时书所在平面和课桌所在平面只有一个公共点。()3、四个点中如果有三个点在同一条直线上,那么这四个点必在同一个平面内。()4、一条直线和一个点可以确定一个平面。()5、如果一条直线和另两条直线都相交,那么这三条直线可以确定一个平面。()平面有关知识(复习)判断下列直线的位置关系:1、竖直的两条电线杆所在的直线思考:在平面内,两条不重合的直线之间有几种位置关系?2、十字路口的两条路所在的直线3、教室内的日光灯管所在的直线与黑板的左右两侧所在的直线空间的两直线呢?lmPml图1图2lll一、空间中两直线的位置关系从图中可见,直线l与m既不相交,也不平行。空间中直线之间的这种关系称为异面直线。不同在任何一个平面内的两条直线叫做异面直线。(既不相交也不平行的两条直线)不同在任何一个平面内1、异面直线判断:直线m和l是异面直线吗?αβlmml(1)(2),则与是异面直线,abab(3)a,b不同在平面内,则a与b异面异面直线的画法:ab通常用一个或两个平面来衬托,异面直线不同在任何一个平面的特点abab1、相交2、平行ml只有一个公共点没有公共点在同一平面2、空间中两直线的三种位置关系3、异面直线mPl没有公共点不同在任一平面mlP探究:HGCADBEFGHEF(B)(C)DAAB,CD,EF,GH这四条线段所在的直线是异面直线的有几对?相交直线有几对?平行直线有几对?二、空间直线的平行关系若a∥b,b∥c,1、平行关系的传递性caabcc公理4平行于同一直线的两直线互相平行aα则a∥c例1:在正方体ABCD—A1B1C1D1中,直线AB与C1D1,AD1与BC1是什么位置关系?为什么?C1ABCDA1B1D1练习:在上例中,AA1与CC1,AC与A1C1的位置是什么关系?例题示范例1:在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。分析:欲证EFGH是一个平行四边形只需证EH∥FG且EH=FGE,F,G,H分别是各边中点连结BD,只需证:EH∥BD且EH=BDFG∥BD且FG=BD1212ABDEFGHC例题示范例1:在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。ABDEFGHC∵EH是△ABD的中位线∴EH∥BD且EH=BD同理,FG∥BD且FG=BD∴EH∥FG且EH=FG∴EFGH是一个平行四边形证明:连结BD2121变式一:在例2中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?EHFGABCD分析:在例题2的基础上我们只需要证明平行四边形的两条邻边相等。菱形变式二:空间四面体A--BCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD上的点,且,求证:四边形ABCD为梯形.23CFCGCBCDABCDEHFG分析:需要证明四边形ABCD有一组对边平行,但不相等。3.等角定理定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。ABCDEF3.等角定理定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。ABCDEF定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.两直线的夹角:90两直线相交所成的4个角中,其中不大于的角叫做两直线的夹角三、两条异面直线所成的角如图所示,a,b是两条异面直线,在空间中任选一点O,过O点分别作a,b的平行线a′和b′,abPa′b′O则这两条线所成的锐角θ(或直角),θ称为异面直线a,b所成的角。?任选Oa′若两条异面直线所成角为90°,则称它们互相垂直。异面直线a与b垂直也记作a⊥b异面直线所成角θ的取值范围:090](,平移例3在正方体ABCD—A1B1C1D1中指出下列各对线段所成的角:练习:1、求直线AD1与B1C所成的夹角;2、与直线BB1垂直的棱有多少条?1)AB与CC1;2)A1B1与AC;3)A1B与D1B1。B1CC1ABDA1D11)AB与CC1所成的角=90°2)A1B1与AC所成的角=45°3)A1B与D1B1所成的角=60°2)与棱BB1垂直的棱有:ABCDA1B1C1D1AD、A1D1、DC、D1C1、A1B1、AB、B1C1、BC、相交:异面:垂直相交垂直异面垂直B1CC1ABDA1D11)直线AD1与B1C所成的夹角90°例题示范例2、如图,已知正方体ABCD-A'B'C'D'中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?(3)哪些棱所在的直线与直线AA'垂直?解:(1)由异面直线的判定方法可知,与直线BA成异面直线的有直线,,,,,BCADCCDDDCDC,例题示范例2、如图,已知正方体ABCD-A'B'C'D'中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?(3)哪些棱所在的直线与直线AA'垂直?解:(2)由可知,等于异面直线与的夹角,所以异面直线与的夹角为450。//BBCCBBABACC,,,,,,,ABBCCDDAABBCCDDA(3)直线与直线都垂直.AACCBA填空:1、空间两条不重合的直线的位置关系有________、________、________三种。2、没有公共点的两条直线可能是________直线,也有可能是________直线。3、和两条异面直线中的一条平行的直线与另一条的位置关系有______________。4、过已知直线上一点可以作______条直线与已知直线垂直。5、过已知直线外一点可以作______条直线与已知直线垂直。平行相交异面平行异面无数无数相交、异面1、分别在两个平面内的两条直线一定是异面直线。()2、空间两条不相交的直线一定是异面直线。()3、垂直于同一条直线的两条直线必平行。()4、若一条直线垂直于两条平行直线中的一条,则它一定与另一条直线垂直。()判断对错:练习反馈:奎屯王新敞新疆1.判断:(1)平行于同一直线的两条直线平行.()(2)垂直于

1 / 69
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功