高数竞赛例题第一讲函数、极限、连续例1.)21(1limnnnnn.例2.)2(642)12(531limnnn例3.xxx35lim0,其中][为取整函数例4.20cos1limxxx例5.2)(coslimnnn例6.eaxaxxx1)(lim2,求常数a.例7.xxxx)1cos2(sinlim例8.]1)2[(lim6123nennnnn例9.xexxxsin)1()31ln(lim2230例10.20)1ln(sin1tan1limxxxxxx例11.)31ln()21ln(limxxx例12.xxxxx30sincossinlim例13.已知)(xf在0x的某邻域内有连续导数,且2))(sin(lim20xxfxxx,求)0(),0(ff.例14.)21(lim22222nnnnnnnn例15.nnnnnnnnn1sin212sin1sinlim例16.0)](1[lim2baxxxx,求常数ba,.例17.设1lim)(2212nnnxbxaxxxf为连续函数,求ba,.例18.设)(xf在),(上连续,且xxff))((,证明至少,使得)(f.....................................................................................................................极限例1.)2211(lim222nnnnnnnnn例2.nknknk1221lim先两边夹,再用定积分定义例3.nnnnnn1sin)1(lim1例4.)]1ln()1[ln(lim22sin0xxxxxeexxx例5.设512)tan)(1ln(lim0xxxxf,求20)(limxxfx.例6.xxxdttxdtttt0020)1ln()cos1()1cossin3(lim例7.1sin)12ln(lim2xxxxexx例8.100102limxexx例9.)(limxxxxx例10.xxnxxxnaaa1210lim,其中,naaa,,21均为正数.例11.已知12)1(2)1(lim)(nnxnnxnxexxexf,求edxxf0)(.例12.设ba0,求nnnnba1lim例13.设)(xf在),(内可导,且exfx)(lim,)]1()([limlimxfxfcxcxxxx,求c的值.例14.设)(xf在0x的某邻域内二阶可导,且0)0(f,0)(lim0xxfx,又已知,0sin)(lim00xxdttfxx求,.例15.当1x时,)1()1)(1)(1(lim242nxxxxn例16.当0x时,求nnxxx2cos4cos2coslim例17.)11()311)(211(lim222nn例18.nnnnnn)12()1(1lim连续例1.求nnxxxf211lim)(的间断点,并判断其类型例2.设)(xg在0x的某邻域内连续,且axxgn1)(lim0,已知0cos02101)()(22102xxxbaxxxdttxgxf在0x处连续,求ba,的值.例3.证方程02cos1lndxxexx在区间),0(内有且仅有两个不同实根.例4.)(xf在],[ba上连续,且bdca,证:在),(ba内至少存在,使得)()()()(fqpdqfcpf,其中qp,为任意正常数.例5.设)(xf在),(ba内连续,且),(,,,21baxxxn,试证:),(ba,使)]()()([1)(21nxfxfxfnf.例6.试证方程bxaxsin,其中0,0ba,至少存在一个正根,并且它不超过ab.例7.设)(),(xgxf在),(上连续,且0)(xg,利用闭区间上连续函数的性质,证明存在一点],[ba,使babadxxgfdxxgxf)()()()(