Everyelasticbodyisspatialand,ingeneral,everyexternalforcesystemisspatial.Hence,strictlyspeaking,anyelasticityproblemisaspatialproblem.Foritssolution,wehavetoconsiderallthecomponentsofstress,strainanddisplacement.However,ifthebodyhasaparticularshapeandtheexternalforcesaredistributedinaparticularmanner,wemayconsiderthespatialproblemasaplaneoneandneglectsomeofthecomponents.Thiswillgreatlysimplifythemathematicalaspectofsolutionwhiletheresultsmaystillbeappliedinengineeringdesignwithsufficientaccuracy.2TheoryofPlaneProblems2—1PlaneStressandPlaneStrain2—2DifferentialEquationsofEquilibrium2—3GeometricalEquations.Rigid-bodyDisplacement2—4PhysicalEquations2—5StressataPoint2—6BoundaryConditions.Saint-Venant’sPrinciple2—7SolutionofPlaneProbleminTermsofDisplacements2—8SolutionofPlaneProbleminTermsofStresses2—9CaseofConstantBodyForces.StressFunction第二章平面问题的基本理论2—1平面应力问题与平面应变问题2—2平衡微分方程2—3几何方程刚体位移2—4物理方程2—5平面问题中一点的应力状态2—6边界条件圣维南原理2—7按位移求解平面问题2—8按应力求解平面问题相容方程2—9常体力情况下的简化应力函数2—1PlaneStressandPlaneStrain空间问题平面问题转化平面应力问题平面应变问题SpatialproblemPlaneproblemPlanestressproblemPlanestrainproblem转化条件:构件的形状荷载性质ParticularshapeParticularforces一、平面应力问题PlaneStress1、构件的形状:薄板:t其它两个方向的尺寸xyozoytThinPlateofuniformthicknesst2、荷载的性质:面力:沿板边,平行于板面,沿厚度不变体力:平行于板面,沿厚度均布xyozoytAlltheforcesbeingparalleltothefacesoftheplateanddistributeduniformlyoverthethickness板面不受力,即:zz=+t/2=0结论:zxz=+t/2=0zyz=+t/2=0因为板很薄,荷载不沿厚度变化,应力是连续分布的,所以可以认为,在整个薄板:z=0zx=0zy=0平面应力问题有那些应变分量和位移分量?薄板的应力为:xyxy且与z无关,为x、y的函数,称为平面应力问题Theremainingstresscomponentsx,y,xy,maybeconsideredtobefunctionsofx、yonly,suchaproblemiscalledaplanestressproblem.二、平面应变问题PlaneStrian1、构件的形状:yzx(1)足够长柱体,两端光滑刚性约束(2)无限长柱体,两端自由Verylongcylindricalorprismatialbody2、荷载的性质:(1)平行于横截面(2)沿长度不变(任意横截面上的受力是相同的)Alltheforcesbeingparalleltoacrosssectionofthebodyandnotvaryingalongtheaxialdirection.称为平面应变问题结论:yzx平面应变问题有那些应力分量?(1)应力、应变只是x、y的函数(2)w=0(z=0),应变分量只有xyxyWithanycrosssectionofthebodyasxyplane,thecomponentswillbefunctionsofx、yonly,duetosymmetry,theshearingstresseszx=0,zy=0,andw=0,suchaproblemiscalledaplanestrainproblem.归纳:平面问题中,共有八个未知量:xyxyxyxyuv求解弹性力学平面问题,就是要根据已知条件(荷载,边界条件)求未知的应力分量、应变分量和位移分量。xyO取图示微六面体为隔离体,厚度t=1Isolateelement2—2平衡微分方程(静力平衡条件)yyxxyxdxxxxdxxxyxydyyyydyyyxyxcXYDifferentialEquationsofEquilibrium建立平衡方程FormulateEquilibriumEquationsyyxxyxdxxxxdxxxyxydyyyydyyyxyxXYxyoXYcMC=0(1)xy=yxX=0(2)011111dydxXdxdxdyydydydxxyxyxyxxxx0XyxyxxY=0(3)0Yxyxyy0Xyxyxx0Yxyxyy(平面应力问题与平面应变问题)Theelasticityproblemisstaticallyindeterminate.Tosolvefortheunknowstresses,wehavetoconsiderthestrainsanddisplacements.DifferentialEquationsofEquilibriumareapplicablebothtoplanestressproblemsandplanestrainproblems.2—3几何方程刚体位移A’B’P’取如图所示隔离体:PABxyoPA=dxPB=dydxxuudxxvvuvdyyuudyyvvP、A、B各点的位移如图所示GeometricalEquations.Rigid-bodyDisplacementx:PA的伸长量y:PB的伸长量xudxudxxuuxyvdyvdyyvvynormalstrainnormalstrainxvdxvdxxvvxy或yx:PA与PB夹角的改变量:+A’BP’uvdyyuudxxvvPABxyoyuxvyuxy几何方程GeometricalEquations:已知位移分量,就能求出应变分量。xuxyvyxvyuxy(平面应力问题与平面应变问题)GeometricalEquationsareapplicablebothtoplanestressproblemsandplanestrainproblems.Foragivensetofdisplacementcomponentsuandv,thestraincomponentsaredefinedbyGeometricalEquations.Foragivensetofstraincomponents,thedisplacementcomponentsuandvarenotwhollydeterminate.已知应变分量,能否求出位移分量?刚体位移(Rigid-bodyDisplacement):设应变分量已知:x=0,y=0,xy=00xux0yvyu=f1(y)v=f2(x)0xvyuxy0)()(21dxxdfdyydfdxxdfdyydf)()(21u=f1(y)=u0+yv=f2(x)=v0-x(变形为零时的位移)Thesearethedisplacementcomponentscorrespondingtozerotrainsandcannotbutbetherigid-bodydisplacement.称为刚体位移(therigid-bodydisplacement):其中若u0=0v0=0和位移为:rxyvu2222弹性体中任意点P(x,y)其位移为:u=u0+yv=v0-xPxxyyrrou0,v0弹性体沿x、y轴方向的平移弹性体沿绕z轴的转动,为什么?therigid-bodytranslationstherigid-bodyrotation和位移的方向:tgxyxytg结论:和位移的方向垂直于OP,沿切线方向,所以表示弹性体绕z轴的转动Pxxyyrru=yv=yo归纳:弹性体在变形为零时有刚体位移,所以当物体发生一定的变形时,由于约束条件不同,可能具有不同的刚体位移,即由变形不能完全确定位移(已知,不能完全确定u,v),须考虑边界条件。或者说,没有约束的弹性体存在任意的,不确定的刚体位移。Anelasticbodycanhaveanyrigid-bodydisplacementsforzerostrains.Hence,atagivenstateofstrain,thebodymayhavedifferentrigid-bodydisplacementsunderdifferentconditionsofconstraint,inordertodeterminetheactualdisplacementofthebody,theremustbethreeproperconditionsofconstraintforthedeterminationofthethreeconstants.2—4物理方程(应力、应变之间的关系)zyxxE1zxyyE1xyzzE1PhysicalEquationsTherelationsbetweenstressesandstrains完全弹性、各向同性体,HOOK定理:Inanisotropicandperfectlyelasticbody,therelationsbetweenstressesandstrainsbasedonHooke’slaw:E、G、为常数(threeelasticconstants),不随坐标、方向而变化xyxyG1xzxzG1yzyzG1)1(2EG其中:EisthemodulusofelasticityorYoung’smodulus,isthePoisson’sratio,Gistheshearmodulusormodulusofrigidity.在平面应力问题中z=0zx=0zy=00xz0yz而且)(yxzEInaplanestressproblem物理方程yxxE1xyyE1xyxyG1(PhysicalEquations)物理方程另一种形式:)(12yxxE)(12xyyE