弹性力学作业

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

弹性力学作业应力状态作业2-1.选择题a.所谓“应力状态”是指。A.斜截面应力矢量与横截面应力矢量不同;B.一点不同截面的应力随着截面方位变化而改变;C.3个主应力作用平面相互垂直;D.不同截面的应力不同,因此应力矢量是不可确定的。b.切应力互等定理根据条件成立。A.纯剪切;B.任意应力状态;C.三向应力状态;D.平面应力状态;c.应力不变量说明。A.应力状态特征方程的根是不确定的;B.一点的应力分量不变;C.主应力的方向不变;D.应力随着截面方位改变,但是应力状态不变。d.关于应力状态分析,是正确的。A.应力状态特征方程的根是确定的,因此任意截面的应力分量相同;B.应力不变量表示主应力不变;C.主应力的大小是可以确定的,但是方向不是确定的;D.应力分量随着截面方位改变而变化,但是应力状态是不变的。e.应力状态分析是建立在静力学基础上的,这是因为。A.没有考虑面力边界条件;B.没有讨论多连域的变形;C.没有涉及材料本构关系;D.没有考虑材料的变形对于应力状态的影响。2-2.梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边界AA',AB,BB’的面力边界条件。2-3.作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。2-4.单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。2-5.已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如图所示。试写出球体的面力边界条件。2-6.矩形横截面悬臂梁作用线性分布载荷,如图所示。试根据材料力学应力解答推导挤压应力y的表达式。2-9.已知弹性体内部某点的应力分量分别为a.x=a,y=-a,z=a,xy=0,yz=0,zx=-a;b.x=50a,y=0,z=-30a,xy=50,yz=-75a,zx=80a;c.x=100a,y=50a,z=-10a,xy=40a,yz=30a,zx=-20a;试求主应力和最大切应力。2-10.已知物体内某点的应力分量为x=y=xy=0,z=200a,yz=zx=100a试求该点的主应力和主平面方位角。2-11.试根据弹性体内某点的主应力和主平面方位写出最大切应力,以及作用面的表达式。2-12.已知弹性体内部某点的应力分量为x=500a,y=0,z=-300a,xy=500a,yz=-750a,zx=800a试求通过该点,法线方向为平面的正应力和切应力。2-13.已知弹性体内部某点的应力张量为试将上述应力张量分解为应力球张量和应力偏张量,并求解应力偏张量的第二不变量。2-14.已知物体内某点的主应力分别为a.1=50a,2=-50a,3=75a;b.1=70.7a,2=0,3=70.7a试求八面体单元的正应力和切应力。2-15.已知物体内某点的应力分量x=50a,y=80a,z=-70a,xy=-20a,yz=60a,zx=a试求主应力和主平面方位角。2-16.已知物体内某点的应力分量x=100a,y=200a,z=300a,xy=-50a,yz=zx=0试求该点的主应力、主切应力、八面体切应力和主平面方位角。应变状态作业3-1.选择题a.下列关于几何方程的叙述,没有错误的是。A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移;B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移。C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量。D.几何方程是一点位移与应变分量之间的唯一关系。b.下列关于“刚体转动”的描述,认识正确的是。A.刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形;B.刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关;C.刚性转动位移也是位移的导数,因此它描述了一点的变形;D.刚性转动分量可以确定弹性体的刚体位移。c.下列关于应变状态的描述,错误的是。A.坐标系的选取不同,应变分量不同,因此一点的应变是不可确定的。B.不同坐标系下,应变分量的值不同,但是描述的一点变形的应变状态是确定的。C.应变分量在不同坐标系中是变化的,但是其内在关系是确定的。D.一点主应变的数值和方位是不变的。d.变形协调方程说明。A.几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的;B.微分单元体的变形必须受到变形协调条件的约束;C.变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D.变形是由应变分量和转动分量共同组成的。3-2.已知弹性体的位移为试求A(1,1,1)和B(0.5,-1,0)点的主应变1。3-3.试求物体的刚体位移,即应变为零时的位移分量。3-4.已知两组位移分量分别为其中ai和bi为常数,试求应变分量,并且指出上述位移是否满足变形协调条件。3-5.已知弹性体的位移为其中A,B,C,a,b,c,,,为常数,试求应变分量。3-6.已知物体内部某点的应变分量为x=10-3,y=5×10-4,z=10-4,xy=8×10-4,yz=6×10-4,xz=-4×10-4试求该点的主应变和最大主应变1的方位角。3-7.平面应变状态下,如果已知0o,60o和120o方向的正应变,试求主应变的大小和方向。3-8.圆截面杆件两端作用扭矩,如图所示,其位移分量为u=-zy+ay+bz+cv=zx+ez-dx+fw=-bx-ey+k设坐标原点O位移固定,试按照下列转动位移边界条件分别确定待定系数a,b,c,d,e,f和k。a.微分线段dz在xOz和yOz平面内不能转动;b.微分线段dx和dy在xOz平面内不能转动。3-9.等截面柱体,材料比重为,在自重作用下的应变分量为其中为材料弹性常数,试检验上述应变分量是否满足变形协调条件和边界条件。3-10.如果物体处于平面应变状态,几何方程为试证明对于单连域物体,位移的单值条件为应变分量满足变形协调方程。3-11.已知物体某点的正应变分量x,y和z,试求其体积应变。3-12.已知物体某点的主应变分量1,2和3,试求其八面体单元切应力表达式。3-13.已知物体变形时的应变分量为x=A0+A1(x2+y2)+x4+y4y=B0+B1(x2+y2)+x4+y4xy=C0+C1xy(x2+y2+C2)z=xzyz=0试求上述待定系数之间的关系。3-14.已知椭圆截面柱体在扭矩作用下产生的应变分量为试证明上述应变分量满足变形协调方程。第四章作业4-1.选择题a.各向异性材料的弹性常数为。A.9个;B.21个;C.3个;D.13个;b.正交各向异性材料性质与下列无关的是。A.拉压与剪切、以及不同平面的剪切变形之间没有耦合作用;B.具有3个弹性对称面;C.弹性常数有9个;D.正交各向异性材料不是均匀材料。c.对于各向同性材料,与下列性质无关的是。A.具有2个弹性常数;B.材料性质与坐标轴的选择无关;C.应力主轴与应变主轴重合;D.弹性常数为3个。应力应变关系作业4-2.试推导轴对称平面应力(z=0)和轴对称平面应变问题(z=0)的胡克定律。4-3.试求体积应力与体积应变得关系。4-4.试证明对于均匀材料,独立的弹性常数只有21个。4-5.试利用正方体单元证明,对于不可压缩材料,泊松比=0.5。4-6.试利用拉梅弹性常数和G表示弹性模量E,泊松比和体积弹性模量K。4-7.试利用应力转轴公式和胡克定律推导轴对称问题的胡克定律。4-8.钢制圆柱体直径为d=100mm,外套一个厚度=5mm的钢制圆筒,如图所示。圆柱体受轴向压力F=250kN作用,已知钢的弹性模量E=210GPa,泊松比=0.3,试求圆筒应力。4-9.已知弹性体某点x和y方向的正应力为x=35MPa,y=25MPa,而z方向的应变z=0,试求该点的其它应力分量。其他作业10-1.半无限弹性体表面作用集中力F,试用应力函数求解应力和位移分量。10-2.圆柱体的侧面作用均匀压力,两个端面作用均匀压力,如图所示。试用应力函数f=C12z+C2z3求解圆柱体的应力分量,并且计算圆柱体的体积改变。10-3.半无限空间物体,材料的比重为,在水平表面作用均匀分布的压力q,如图所示。试用位移法求解半无限体的应力和位移。10-4.设函数f=axy3+yf1(x)+f2(x)可以作为求解平面问题的应力函数,试求待定函数f1(x)和f2(x)。10-5.单位厚度的杆件两端作用均匀压力p,在y=±h的边界为刚性平面约束,如图所示。已知杆件的位移为试求其应力分量。11-1.选择题a.弹性力学解的唯一性定理在条件成立。A.具有相同体力和面力边界条件;B.具有相同位移约束;C.相同材料;D.上述3条同时成立。b.对于弹性力学的基本解法,不要求条件。A.基本未知量必须能够表达其它未知量;B.必须有基本未知量表达的基本方程;C.边界条件必须用基本未知量表达;D.基本未知量必须包括所有未知函数。c.下列关于弹性力学基本方程描述正确的是。A.几何方程适用小变形条件;B.物理方程与材料性质无关;C.平衡微分方程是确定弹性体平衡的唯一条件;D.变形协调方程是确定弹性体位移单值连续的唯一条件;d.关于弹性力学的叠加原理,应用的基本条件不包括。A.小变形条件;B.材料变形满足完全弹性条件;C.材料本构关系满足线性弹性条件;D.应力应变关系是线性完全弹性体。e.下列关于应力解法的说法正确的是。A.必须以应力分量作为基本未知量;B.不能用于位移边界条件;C.应力表达的变形协调方程是唯一的基本方程;D.必须使用应力表达的位移边界条件。f.弹性力学的基本未知量没有。A.应变分量;B.位移分量;C.面力;D.应力。g.下列关于圣维南原理的正确叙述是。A.边界等效力系替换不影响弹性体内部的应力分布;B.等效力系替换将不影响弹性体的变形;C.等效力系替换主要影响载荷作用区附近的应力分布,对于远离边界的弹性体内部的影响比较小;D.圣维南原理说明弹性体的作用载荷可以任意平移。11-2.设有半空间弹性体,在边界平面的一个半径为a的圆面积上作用均匀分布压力q,如图所示。试求圆心下方距边界为h处的铅直正应力,并计算圆心处的沉陷。12-1.悬挂板,在O点固定,若板的厚度为1,宽度为2a,长度为l,材料的比重为,如图所示。试求该板在自重作用下的应力分量和位移分量。12-2.等厚度板沿周边作用着均匀压力q,若O点不能移动和转动,试求板内任意点的位移分量。12-3.已知直角六面体的长度h比宽度和高度b大的多,将它放置在绝对刚性和光滑的基础上,在六面体的上表面作用均匀压力q,试求应力分量与位移分量。12-4.单位厚度的矩形截面梁,在x=c处作用着集中载荷F=1,如图所示。试写出该梁上下两个面上的边界条件。13-1.选择题a.下列关于应力函数的说法,正确的是。A.应力函数与弹性体的边界条件性质相关,因此应用应力函数,自然满足边界条件;B.多项式函数自然可以作为平面问题的应力函数;C.一次多项式应力函数不产生应力,因此可以不计。D.相同边界条件和作用载荷的平面应力和平面应变问题的应力函数不同。13-2.简支梁仅承受自身重量,材料的比重为,试检验函数f=Ax2y3+By5+Cy3+Dx2y是否可以作为应力函数,并且求各个待定系数。13-3.建筑在水下的墙体受水压,轴向压力F和侧向力F作用,如图所示。已知墙体的端部与水平面等高,水的比重为,侧向力与水平面距离为2h,设应力函数为f=Ay3+Bx2+Cxy+Dx3y+Ex3试求y=3h墙体截面的应力分量。13-4.已知如图所示单位厚度的矩形薄板,周边作用着均匀剪力q。试求边界上的并求其应力分量(不计体力)。13-5.已知函数f=A(x4-y4)试检查它能否做为应力函数?如果可以,试

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功