导数教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1导数的背景一、导入新课1.瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少?析:大家知道,自由落体的运动公式是221gts(其中g是重力加速度).当时间增量t很小时,从3秒到(3+t)秒这段时间内,小球下落的快慢变化不大.因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+t)秒这段时间内位移的增量:222)(9.44.2939.4)3(9.4)3()3(tttstss从而,ttsv9.44.29.从上式可以看出,t越小,ts越接近29.4米/秒;当t无限趋近于0时,ts无限趋近于29.4米/秒.此时我们说,当t趋向于0时,ts的极限是29.4.当t趋向于0时,平均速度ts的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s=s(t),则物体在t到(t+t)这段时间内的平均速度为ttsttsts)()(.如果t无限趋近于0时,ts无限趋近于某个常数a,就说当t趋向于0时,ts的极限为a,这时a就是物体在时刻t的瞬时速度.2.切线的斜率问题2:P(1,1)是曲线2xy上的一点,Q是曲线上点P附近的一个点,当点Q沿曲线逐渐向点P趋近时割线PQ的斜率的变化情况.2析:设点Q的横坐标为1+x,则点Q的纵坐标为(1+x)2,点Q对于点P的纵坐标的增量(即函数的增量)22)(21)1(xxxy,所以,割线PQ的斜率xxxxxykPQ2)(22.由此可知,当点Q沿曲线逐渐向点P接近时,x变得越来越小,PQk越来越接近2;当点Q无限接近于点P时,即x无限趋近于0时,PQk无限趋近于2.这表明,割线PQ无限趋近于过点P且斜率为2的直线.我们把这条直线叫做曲线在点P处的切线.由点斜式,这条切线的方程为:12xy.一般地,已知函数)(xfy的图象是曲线C,P(00,yx),Q(yyxx00,)是曲线C上的两点,当点Q沿曲线逐渐向点P接近时,割线PQ绕着点P转动.当点Q沿着曲线无限接近点P,即x趋向于0时,如果割线PQ无限趋近于一个极限位置PT,那么直线PT叫做曲线在点P处的切线.此时,割线PQ的斜率xykPQ无限趋近于切线PT的斜率k,也就是说,当x趋向于0时,割线PQ的斜率xykPQ的极限为k.3.边际成本问题3:设成本为C,产量为q,成本与产量的函数关系式为103)(2qqC,我们来研究当q=50时,产量变化q对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(qqqCqCC.产量变化q对成本的影响可用:qqC3300来刻划,q越小,qC越接近300;当q无限趋近于0时,qC无限趋近于300,我们就说当q趋向于0时,3qC的极限是300.我们把qC的极限300叫做当q=50时103)(2qqC的边际成本.一般地,设C是成本,q是产量,成本与产量的函数关系式为C=C(q),当产量为0q时,产量变化q对成本的影响可用增量比qqCqqCqC)()(00刻划.如果q无限趋近于0时,qC无限趋近于常数A,经济学上称A为边际成本.它表明当产量为0q时,增加单位产量需付出成本A(这是实际付出成本的一个近似值).二、小结瞬时速度是平均速度ts当t趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy当x趋近于0时的极限;边际成本是平均成本qC当q趋近于0时的极限.导数的概念一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。二、新授课:1.设函数)(xfy在0xx处附近有定义,当自变量在0xx处有增量x时,则函数)(xfY相应地有增量)()(00xfxxfy,如果0x时,y与x的比xy4(也叫函数的平均变化率)有极限即xy无限趋近于某个常数,我们把这个极限值叫做函数)(xfy在0xx处的导数,记作0/xxy,即xxfxxfxfx)()(lim)(0000/注:1.函数应在点0x的附近有定义,否则导数不存在。2.在定义导数的极限式中,x趋近于0可正、可负、但不为0,而y可能为0。3.xy是函数)(xfy对自变量x在x范围内的平均变化率,它的几何意义是过曲线)(xfy上点()(,00xfx)及点)(,(00xxfxx)的割线斜率。4.导数xxfxxfxfx)()(lim)(0000/是函数)(xfy在点0x的处瞬时变化率,它反映的函数)(xfy在点0x处变化的快慢程度,它的几何意义是曲线)(xfy上点()(,00xfx)处的切线的斜率。因此,如果)(xfy在点0x可导,则曲线)(xfy在点()(,00xfx)处的切线方程为))(()(00/0xxxfxfy。5.导数是一个局部概念,它只与函数)(xfy在0x及其附近的函数值有关,与x无关。6.在定义式中,设xxx0,则0xxx,当x趋近于0时,x趋近于0x,因此,导数的定义式可写成00000/)()(lim)()(lim)(0xxxfxfxxfxxfxfxxox。7.若极限xxfxxfx)()(lim000不存在,则称函数)(xfy在点0x处不可导。8.若)(xf在0x可导,则曲线)(xfy在点()(,00xfx)有切线存在。反之不然,若曲线)(xfy在点()(,00xfx)有切线,函数)(xfy在0x不一定可导,并且,若函5数)(xfy在0x不可导,曲线在点()(,00xfx)也可能有切线。一般地,axbax)(lim0,其中ba,为常数。特别地,aax0lim。如果函数)(xfy在开区间),(ba内的每点处都有导数,此时对于每一个),(bax,都对应着一个确定的导数)(/xf,从而构成了一个新的函数)(/xf。称这个函数)(/xf为函数)(xfy在开区间内的导函数,简称导数,也可记作/y,即)(/xf=/y=xxfxxfxyxx)()(limlim00函数)(xfy在0x处的导数0/xxy就是函数)(xfy在开区间),(ba)),((bax上导数)(/xf在0x处的函数值,即0/xxy=)(0/xf。所以函数)(xfy在0x处的导数也记作)(0/xf。注:1.如果函数)(xfy在开区间),(ba内每一点都有导数,则称函数)(xfy在开区间),(ba内可导。2.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数)(xfy在点0x处的导数就是导函数)(/xf在点0x的函数值。3.求导函数时,只需将求导数式中的0x换成x就可,即)(/xf=xxfxxfx)()(lim04.由导数的定义可知,求函数)(xfy的导数的一般方法是:(1).求函数的改变量)()(xfxxfy。(2).求平均变化率xxfxxfxy)()(。6(3).取极限,得导数/y=xyx0lim。几种常见的导函数函数的和差积商的导数复合函数的导函数1.复合函数:由几个函数复合而成的函数,叫复合函数.由函数)(ufy与)(xu复合而成的函数一般形式是)]([xfy,其中u称为中间变量.72.求函数2(32)yx的导数的两种方法与思路:方法一:22[(32)](9124)1812xyxxxx;方法二:将函数2(32)yx看作是函数2yu和函数32ux复合函数,并分别求对应变量的导数如下:2()2uyuu,(32)3xux两个导数相乘,得232(32)31812uxyuuxx,从而有xuxuyy'''对于一般的复合函数,结论也成立,以后我们求y′x时,就可以转化为求yu′和u′x的乘积,关键是找中间变量,随着中间变量的不同,难易程度不同.3.复合函数的导数:设函数u=(x)在点x处有导数u′x=′(x),函数y=f(u)在点x的对应点u处有导数y′u=f′(u),则复合函数y=f((x))在点x处也有导数,且xuxuyy'''或f′x((x))=f′(u)′(x).证明:(教师参考不需要给学生讲)设x有增量Δx,则对应的u,y分别有增量Δu,Δy,因为u=φ(x)在点x可导,所以u=(x)在点x处连续.因此当Δx→0时,Δu→0.当Δu≠0时,由xuuyxy.且xyuyux00limlim.∴xuuyxuuyxuuyxyxuxxxx000000limlimlimlimlimlim即xuxuyy'''(当Δu=0时,也成立)4.复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数5.复合函数求导的基本步骤是:分解——求导——相乘——回代.奎屯王新敞新疆

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功