第16章压杆稳定16.1压杆稳定性的概念在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷Fs(或抗压强度载荷Fb),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于Fs(或Fb)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。图16-1失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。图16-3所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。图16-5图16-6通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F由小变大的过程中,可以观察到:1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态是稳定平衡。2)当压力值F2超过其一限度Fcr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态是不稳定平衡。3)界于前二者之间,存在着一种临界状态。当压力值正好等于Fcr时,一旦去掉横向干扰力,压杆将在微弯状态下达到新的平衡,既不恢复原状,也不再继续弯曲,如图16-6c所示。因此,该杆原有直线平衡状态是随遇平衡,该状态又称为临界状态。临界状态是杆件从稳定平衡向不稳定平衡转化的极限状态。压杆处于临界状态时的轴向压力称为临界力或临界载荷,用Fcr表示。由上述可知,压杆的原有直线平衡状态是否稳定,与所受轴向压力大小有关。当轴向压力达到临界力时,压杆即向失稳过渡。所以,对于压杆稳定性的研究,关键在于确定压杆的临界力。16.2两端铰支细长压杆的临界力图16-7a为一两端为球形铰支的细长压杆,现推导其临界力公式。图16-7根据前节的讨论,轴向压力到达临界力时,压杆的直线平衡状态将由稳定转变为不稳定。在微小横向干扰力解除后,它将在微弯状态下保持平衡。因此,可以认为能够保持压杆在微弯状态下平衡的最小轴向压力,即为临界力。选取坐标系如图l6-7a所示,假想沿任意截面将压杆截开,保留部分如图16-7b所示。由保留部分的平衡得vFxMcr(a)在式(a)中,轴向压力Fcr取绝对值。这样,在图示的坐标系中弯矩M与挠度v的符号总相反,故式(a)中加了一个负号。当杆内应力不超过材料比例极限时,根据挠曲线近似微分方程有EIvFEIxMxvcr22dd(b)由于两端是球铰支座,它对端截面在任何方向的转角都没有限制。因而,杆件的微小弯曲变形一定发生于抗弯能力最弱的纵向平面内,所以上式中的I应该是横截面的最小惯性矩。令EIFkcr2(c)式(b)可改写为0dd222vkxv(d)此微分方程的通解为kxCkxCvcossin21(e)式中1C、2C为积分常数。由压杆两端铰支这一边界条件0x,0v(f)lx,0v(g)将式(f)代入式(e),得02C,于是kxCvsin1(h)式(g)代入式(h),有0sin1klC(i)在式(i)中,积分常数1C不能等于零,否则将使有0v,这意味着压杆处于直线平衡状态,与事先假设压杆处于微弯状态相矛盾,所以只能有0sinkl(j)由式(j)解得,,,210nnkllnk=(k)则EIFlnkcr2222或,,,210222nlEInFcr(l)因为n可取0,1,2,…中任一个整数,所以式(1)表明,使压杆保持曲线形态平衡的压力,在理论上是多值的。而这些压力中,使压杆保持微小弯曲的最小压力,才是临界力。取n=0,没有意义,只能取n=1。于是得两端铰支细长压杆临界力公式22lEIFcr(16-1)式(16-1)又称为欧拉公式。在此临界力作用下,lk=,则式(h)可写成lxCvsin1(m)可见,两端铰支细长压杆在临界力作用下处于微弯状态时的挠曲线是条半波正弦曲线。将2lx代入式(m),可得压杆跨长中点处挠度,即压杆的最大挠度max1122sinvCllxCvlx1C是任意微小位移值。1C之所以没有一个确定值,是因为式(b)中采用了挠曲线的近似微分方程式。如果采用挠曲线的精确微分方程式,那么1C值便可以确定。这时可得到最大挠度maxv与压力F之间的理论关系,如图16-8的OAB曲线。此曲线表明,当压力小于临界力crF时,F与maxv之间的关系是直线OA,说明压杆一直保持直线平衡状态。当压力超过临界力crF时,压杆挠度急剧增加。1C图16-8在以上讨论中,假设压杆轴线是理想直线,压力F是轴向压力,压杆材料均匀连续。这是一种理想情况,称为理想压杆。但工程实际中的压杆并非如此。压杆的轴线难以避免有一些初弯曲,压力也无法保证没有偏心,材料也经常有不均匀或存在缺陷的情况。实际压杆的这些与理想压杆不符的因素,就相当于作用在杆件上的压力有一个微小的偏心距e。试验结果表明,实际压杆的F与maxv的关系如图16-8中的曲线OD表示,偏心距愈小,曲线OD愈靠近OAB。16.3不同杆端约束细长压杆的临界力vmax压杆临界力公式(16-1)是在两端铰支的情况下推导出来的。由推导过程可知,临界力与约束有关。约束条件不同,压杆的临界力也不相同,即杆端的约束对临界力有影响。但是,不论杆端具有怎样的约束条件,都可以仿照两端铰支临界力的推导方法求得其相应的临界力计算公式,这里不详细讨论,仅用类比的方法导出几种常见约束条件下压杆的临界力计算公式。16.3.1一端固定另一端自由细长压杆的临界力图16-9为—端固定另一端自由的压杆。当压杆处于临界状态时,它在曲线形式下保持平衡。将挠曲线AB对称于固定端A向下延长,如图中假想线所示。延长后挠曲线是一条半波正弦曲线,与本章第二节中两端铰支细长压杆的挠曲线一样。所以,对于—端固定另一端自由且长为l的压杆,其临界力等于两端铰支长为l2的压杆的临界力,即222lEIFcr图16-9图16-10图16-1116.3.2两端固定细长压杆的临界力在这种杆端约束条件下,挠曲线如图16-10所示。该曲线的两个拐点C和D分别在距上、下端为4l处。居于中间的2l长度内,挠曲续是半波正弦曲线。所以,对于两端固定且长为l的压杆,其临界力等于两端铰支长为2l的压杆的临界力,即222lEIFcr16.3.3一端固定另一端铰支细长压杆的临界力在这种杆端约束条件下,挠曲线形状如图16-11所示。在距铰支端B为l7.0处,该曲线有一个拐点C。因此,在l7.0长度内,挠曲线是一条半波正弦曲线。所以,对于一端固定另一端铰支且长为l的压杆,其临界力等于两端铰支长为l7.0的压杆的临界力,即7.022lEIFcr综上所述,只要引入相当长度的概念,将压杆的实际长度转化为相当长度,便可将任何杆端约束条件的临界力统一写22lEIFcr(16-2)称为欧拉公式的一般形式。由式(16-2)可见,杆端约束对临界力的影响表现在系数上。称为长度系数,l为压杆的相当长度,表示把长为l的压杆折算成两端铰支压杆后的长度。几种常见约束情况下的长度系数列入表16-1中。表16-1压杆的长度系数压杆的约束条件长度系数两端铰支一端固定,另一端自由两端固定一端固定,另一端铰支=1=2=1/2≈0.7表16-1中所列的只是几种典型情况,实际问题中压杆的约束情况可能更复杂,对于这些复杂约束的长度系数可以从有关设计手册中查得。16.4欧拉公式的适用范围经验公式16.4.1临界应力和柔度将式(16-2)的两端同时除以压杆横截面面积A,得到的应力称为压杆的临界应力cr,22AlEIAFcrcr(a)引入截面的惯性半径iAIi2(16-3)将上式代入式(a),得22ilEcr若令il(16-4)则有22Ecr(16-5)式(16-5)就是计算压杆临界应力的公式,是欧拉公式的另一表达形式。式中,il称为压杆的柔度或长细比,它集中反映了压杆的长度、约束条件、截面尺寸和形状等因素对临界应力的影响。从式(16-5)可以看出,压杆的临界应力与柔度的平方成反比,柔度越大,则压杆的临界应力越低,压杆越容易失稳。因此,在压杆稳定问题中,柔度是一个很重要的参数。16.4.2欧拉公式的适用范围在推导欧拉公式时,曾使用了弯曲时挠曲线近似微分方程式EIxMxv22dd,而这个方程是建立在材料服从虎克定律基础上的。试验已证实,当临界应力不超过材树比例极限p时,由欧拉公式得到的理论曲线与试验曲线十分相符,而当临界应力超过p时,两条曲线随着柔度减小相差得越来越大(如图16-12所示)。这说明欧拉公式只有在临界应力不超过材料比例极限时才适用,即图16-1222pcrEI或PE(b)若用p表示对应于临界应力等于比例极限p时的柔度值,则PpE(16-6)p仅与压杆材料的弹性模量E和比例极限p有关。例如,对于常用的Q235钢,E=200GPa,p=200MPa,代入式(16-6),得3.99102001020069从以上分析可以看出:当p时,pcr,这时才能应用欧拉公式来计算压杆的临界力或临界应力。满足p的压杆称为细长杆或大柔度杆。16.4.3中柔度压杆的临界应力公式在工程中常用的压杆,其柔度往往小于p。实验结果表明,这种压杆丧失承载能力的原因仍然是失稳。但此时临界应力cr已大于材料的比例极限p,欧拉公式已不适用,这是超过材料比例极限压杆的稳定问题。对于这类失稳问题,曾进行过许多理论和实验研究工作,得出理论分析的结果。但工程中对这类压杆的技算,一般使用以试验结果为依据的经验公式。在这里我们介绍两种经常使用的经验公式:直线公式和抛物线公式。1.直线公式把临界应力与压杆的柔度表示成如下的线性关系。bacr(16-7)式中a、b是与材料性质有关的系数,可以查相关手册得到。由式(16-7)可见,临界