On the Remak height, the Mahler measure, and conju

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ONTHEREMAKHEIGHT,THEMAHLERMEASURE,ANDCONJUGATESETSOFALGEBRAICNUMBERSLYINGONTWOCIRCLESA.DUBICKASandC.J.SMYTHWedeneanewheightfunctionR(),theRemakheightofanalgebraicnumber.WegivesharpupperandlowerboundsforR()intermsoftheclassicalMahlermeasureM():Studyofwhenoneoftheseboundsisexactleadsustoconsiderationofconjugatesetsofalgebraicnumbersofnorm1lyingontwocirclescenteredat0.Wegiveacompletecharacterisationofsuchconjugatesets.Theyturnouttobeoftwotypes:onerelatedtocertaincubicalgebraicnumbers,andtheotherrelatedtoanon-integergeneralisationofSalemnumberswhichwecallextendedSalemnumbers.1991MathematicsSubjectClassication:11R06:1.Introduction.Letbeanalgebraicnumber,ofdegreed2,withminimalpolynomiala0zd+:::+ad2Z[z]overtherationals,conjugates1;2;:::;d(withoneofthese)labelledsothatj1jj2j:::jdj.In1952RobertRemak[Re]gaveanewupperboundforthemodulusofaVandermondedeterminant.Whenappliedtothediscriminant=a2d20ij(ij)2,hisboundispjj6dd=2ja0jd1j1jd1j2jd2:::jd1j:AsweshallseefromTheorem1below,thisboundisatleastasstrongastheclassicalboundpjj6dd=2M()d1(1)whichcomesstraightfromHadamardsinequality([H],[HLP],p.34);sometimesRemaksboundissignicantlystronger.HereM()istheMahlermeasure(height)M()=ja0jdi=1max(1;jij):(2)SeeforinstanceEverestandWard[EW]foranintroductiontoMahlermeasure.Accordingly,wedenetheRemakheightR()byR()=ja0jj1jj2jd2d1j3jd3d1:::jd1j1d1;(3)1sothatRemak’sboundcanbewrittenpjj6dd=2R()d1;(4)resembling(1).InthispaperweobtainsharpupperandlowerboundsforR()intermsofM(),anddescribeinturnthoseforwhicheachoftheseboundsisinfactanequality.Thisleadsustothestudyofalgebraicnumberslyingwiththeirconjugatesontwocircles(Theorem2).Here,andthroughoutthepaper,allcirclesareassumedtobecenteredat0.Werstneedsomedenitions.RecallthataSalemnumberisanalgebraicinteger1ofdegree4conjugateto1whoseotherconjugatesalllieonjzj=1.DeneanextendedSalemnumbertobeanalgebraicnumber1,ofdegreeatleast4,conjugateto1,whoseotherconjugatesalllieonjzj=1.SotheextendedSalemnumberswhicharealgebraicintegersaretheSalemnumbers.yAnalgebraicnumberisreciprocalif1isaconjugateof.Saythatanalgebraicnumberisaunit-circulariflieswithitsconjugatesonjzj=1.So,byKronecker’sTheorem([EW],p.27),theunit-circularalgebraicintegersaretherootsofunity.Wenowstateourrstmainresult.Theorem1.Letbeanalgebraicnumberofdegreed2,andminimalpolynomiala0zd+:::+adovertherationals.ThenM()dd1min(ja0j;jadj)(max(ja0j;jadj))1=(d1)!1=26R()6M():(5)Therstinequalityisanequalitypreciselywheneither(i)ja0j=jadjandlieswithitsconjugatesontwocircles(butnotonjustone)or(ii)lieswithitsconjugatesononecircle.Thesecondinequalityisanequalitypreciselywheneither(iii)d=2andj1j1j2jor(iv)d4andiseitherunit-circularorisanextendedSalemnumber.Notes.1.SinceM()max(ja0j;jadj),itfollowsfrom(5)thatalsoR()pM()min(ja0j;jadj)(6)yIfSalemnumberswererenamedSalemintegers,thenextendedSalemnumberscouldsimplybecalledSalemnumbers!2andsocertainlyR()pja0adj1:Thislastinequalitywasprovedealierin[D2].Ifisnotaunit,thenR()p2,withR()=p2ford=2or1=2.2.From(5)and(6),R()=1iM()=1.SoR()=1iisarootofunity.3.Inequality(5)infactholdsforanyP2C[z]witha0ad6=0andM();R()replacedbytheirpolynomialversionsM(P);R(P)denedasin(2),(3)respectively,withtheibeingthezerosofP.IfwerestrictTheorem1tobeingaunit,weimmediatelyget:Theorem10.Letbeaunitofdegreed2.ThenM()d2(d1)6R()6M():(50)Therstinequalityisanequalitywheneitherlieswithitsconjugatesontwocircles,oriscyclotomic.Thesecondinequalityisanequalitywheneither(i)d=2or(ii)d4andiseithercyclotomicoraSalemnumber.2.Conjugatesetsofalgebraicnumbersoncircles:results.Inthissectionwedescribethosealgebraicnumberswhichsatisfyeitherconditions(i)or(ii)ofTheorem1.Todothis,itisconvenientatthispointtomaketwomorenewdenitions.Deneaunit-normtobeanalgebraicnumberwithja0j=jadj.Sotheunit-normalgebraicintegersaretheunits.NotethatextendedSalemnumbersareunit-norms.LetbeanextendedSalemnumberorareciprocalquadratic,ofdegree2s,withconjugateset1;12;:::;1s.WedeneanalgebraicnumbertobeaSalemhalf-normif=122:::ssforsomesuchandsomei=1(i=1;:::;s).All2ssuchnumbersaredistinct(seeCorollary4).Notethatallconjugatesofsuchanareoftheform0=122:::ssforsomei=1(i=1;:::;s),andsolieonthetwocirclesjzj=andjzj=1:Infact,asisaunit-norm(byLemma4),halfofitsconjugatesmustlieononecircle,andhalfontheother.Clearly,deg62s:Itneednotequal2showever;thecelebratedLehmerdegree2s=10example([EW],p.13)givesrisetotwonon-conjugateSalemhalf-norms,havingminimalpolynomialsP(z)andz16P(1=z),whereP(z)=z16+2z15+z142z134z122z11+3z10+5z9+3z8+z7z5z4z3+z2+z+1:Wecannowstateoursecondmainresult,elucidatingcondition(i)ofTheorem1.Theorem2.Supposethataunit-normofdegreedlies,withallitsconjugates,ontwocirclesjzj=randjzj=R,butnotjustonone,with(withoutlossofgenerality)atmosthalfoftheconjugatesonjzj=r.Thenoneofthefollowingholds:3(a)disamultipleof3,R=r1=2withhavingd3conjugatesonjzj=rand2d3onjzj=r1=2.Assuming(withoutlossofgenerality)thatjj=rwehave,furthermore,thatforsomepositiveinte

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功