第八章 相关分析和回归分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第八章SPSS相关分析与回归分析8.2.4相关分析应用举例为研究高等院校人文社会科学研究中立项课题数会受哪些因素的影响,收集1999年31个省市自治区部分高校有关社科研究方面的数据,研究立项课题数(当年)与投入的具有高级职称的人年数(当年)、发表的论文数(上年)之间是否具有较强的线性关系。8.3偏相关分析•8.3.1偏相关分析和偏相关系数上节中的相关系数是研究两变量间线性相关性的,若还存在其他因素影响,就相关系数本身来讲,它未必是两变量间线性相关强弱的真实体现,往往有夸大的趋势。例如,在研究商品的需求量和价格、消费者收入之间的线性关系时,需求量和价格之间的相关关系实际还包含了消费者收入对价格和商品需求量的影响。在这种情况下,单纯利用相关系数来评价变量间的相关性显然是不准确的,而需要在剔除其他相关因素影响的条件下计算变量间的相关。偏相关的意义就在于此。•偏相关分析也称净相关分析,它在控制其他变量的线性影响的条件下分析两变量间的线性关系,所采用的工具是偏相关系数。•控制变量个数为1时,偏相关系数称一阶偏相关;当控制两个变量时,偏相关系数称为二阶偏相关;当控制变量的个数为0时,偏相关系数称为零阶偏相关,也就是简单相关系数。利用偏相关系数进行分析的步骤•第一,计算样本的偏相关系数假设有三个变量y、x1和x2,在分析x1和y之间的净相关时,当控制了x2的线性作用后,x1和y之间的一阶偏相关定义为:偏相关系数的取值范围及大小含义与相关系数相同。12121,2222121212212(1)(1)yyxxxyyyyyyrrrrrrrrr1其中,、、分别表示和x的相关系数、和的相关系数、和的相关系数。•第二,对样本来自的两总体是否存在显著的净相关进行推断•检验统计量为:其中,r为偏相关系数,n为样本数,q为阶数。T统计量服从n-q-2个自由度的t分布。221nqtrr8.3.2偏相关分析的基本操作1.选择菜单Analyze-Correlate-Partial2.把参与分析的变量选择到Variables框中。3.选择一个或多个控制变量到Controllingfor框中。4.在TestofSignificance框中选择输出偏相关检验的双尾概率p值或单尾概率p值。5.在Option按钮中的Statistics选项中,选中Zero-orderCorrelations表示输出零阶偏相关系数。至此,SPSS将自动进行偏相关分析和统计检验,并将结果显示到输出窗口。8.3.3偏相关分析的应用举例上节中研究高校立项课题总数影响因素的相关分析中发现,发现立项课题数与论文数之间有较强正线性相关关系,但应看到这种关系中可能掺入了投入高级职称的人年数的影响,因此,为研究立项课题总数和发表论文数之间的净相关系数,可以将投入高级职称的人年数加以控制,进行偏相关分析。8.4线性回归分析8.4.1线性回归分析概述•线性回归分析的内容能否找到一个线性组合来说明一组自变量和因变量的关系如果能的话,这种关系的强度有多大,也就是利用自变量的线性组合来预测因变量的能力有多强整体解释能力是否具有统计上的显著性意义在整体解释能力显著的情况下,哪些自变量有显著意义•回归分析的一般步骤确定回归方程中的解释变量(自变量)和被解释变量(因变量)确定回归方程对回归方程进行各种检验利用回归方程进行预测多元线性回归模型多元线性回归方程:y=β0+β1x1+β2x2+...+βkxkβ1、β2、βk为偏回归系数。β1表示在其他自变量保持不变的情况下,自变量x1变动一个单位所引起的因变量y的平均变动。对于多元线性回归方程:在多元线性回归分析中,引起判定系数增加的原因有两个:一个是方程中的解释变量个数增多,另一个是方程中引入了对被解释变量有重要影响的解释变量。如果某个自变量引入方程后对因变量的线性解释有重要贡献,那么必然会使误差平方和显著减小,并使平均的误差平方和也显著减小,从而使调整的判定系数提高。所以在多元线性回归分析中,调整的判定系数比判定系数更能准确的反映回归方程的拟合优度。1/1/1122nSSTpnSSERSSTSSER•8.4.3.4残差分析残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定义为:对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征和规律性,那么残差序列中应不包含明显的规律性。残差分析包括以下内容:残差服从正态分布,其平均值等于0;残差取值与X的取值无关;残差不存在自相关;残差方差相等。)...(ˆ22110ppiiiixxxyyye1、对于残差均值和方差齐性检验可以利用残差图进行分析。如果残差均值为零,残差图的点应该在纵坐标为0的中心的带状区域中随机散落。如果残差的方差随着解释变量值(或被解释变量值)的增加呈有规律的变化趋势,则出现了异方差现象。2、DW检验。DW检验用来检验残差的自相关。检验统计量为:DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明无自相关现象。)1(2)(22221nttnttteeeDW•8.4.3.5多重共线性分析多重共线性是指解释变量之间存在线性相关关系的现象。测度多重共线性一般有以下方式:1、容忍度:其中,是第i个解释变量与方程中其他解释变量间的复相关系数的平方,表示解释变量之间的线性相关程度。容忍度的取值范围在0-1之间,越接近0表示多重共线性越强,越接近1表示多重共线性越弱。2、方差膨胀因子VIF。方差膨胀因子是容忍度的倒数。VIF越大多重共线性越强,当VIF大于等于10时,说明存在严重的多重共线性。21iiRTol2iR8.4.3线性回归分析的基本操作(1)选择菜单Analyze-Regression-Linear,出现窗口:(2)选择被解释变量进入Dependent框。(3)选择一个或多个解释变量进入Independent(s)框。(4)在Method框中选择回归分析中解释变量的筛选策略。其中Enter表示所选变量强行进入回归方程,是SPSS默认的策略,通常用在一元线性回归分析中;Remove表示从回归方程中剔除所选变量;Stepwise表示逐步筛选策略;Backward表示向后筛选策略;Forward表示向前筛选策略。注:多元回归分析中,变量的筛选一般有向前筛选、向后筛选、逐步筛选三种基本策略。•向前筛选(Forward)策略:解释变量不断进入回归方程的过程。首先,选择与被解释变量具有最高线性相关系数的变量进入方程,并进行回归方程的各种检验;然后,在剩余的变量中寻找与被解释变量偏相关系数最高且通过检验的变量进入回归方程,并对新建立的回归方程进行各种检验;这个过程一直重复,直到再也没有可进入方程的变量为止。•向后筛选(Backward)策略:变量不断剔除出回归方程的过程。首先,所有变量全部引入回归方程,并对回归方程进行各种检验;然后,在回归系数显著性检验不显著的一个或多个变量中,剔除t检验值最小的变量,并重新建立回归方程和进行各种检验;如果新建回归方程中所有变量的回归系数检验都显著,则回归方程建立结束。否则按上述方法再一次剔除最不显著的变量,直到再也没有可剔除的变量为止。•逐步筛选(Stepwise)策略:在向前筛选策略的基础上结合向后筛选策略,在每个变量进入方程后再次判断是否存在应该剔除出方程的变量。因此,逐步筛选策略在引入变量的每一个阶段都提供了再剔除不显著变量的机会。(5)第三和第四步中确定的解释变量及变量筛选策略可放置在不同的块(Block)中。通常在回归分析中不止一组待进入方程的解释变量和相应的筛选策略,可以单击Next和Previous按钮设置多组解释变量和变量筛选策略并放置在不同的块中。(6)选择一个变量作为条件变量放到SelectionVariable框中,并单击Rule按钮给定一个判断条件。只有变量值满足判定条件的样本才参与线性回归分析。(7)在CaseLabels框中指定哪个变量作为样本数据点的标志变量,该变量的值将标在回归分析的输出图形中。8.4.4线性回归分析的其他操作1、Statistics按钮,出现的窗口可供用户选择更多的输出统计量。(1)Estimates:SPSS默认输出项,输出与回归系数相关的统计量。包括回归系数(偏回归系数)、回归系数标准误差、标准化回归系数、回归系数显著性检验的t统计量和概率p值,各解释变量的容忍度。(2)ConfidenceIntervals:输出每个非标准化回归系数95%的置信区间。(3)Descriptive:输出各解释变量和被解释变量的均值、标准差、相关系数矩阵及单侧检验概率p值。(4)Modelfit:SPSS默认输出项,输出判定系数、调整的判定系数、回归方程的标准误差、回归方程显著F检验的方程分析表。(5)Rsquaredchange:输出每个解释变量进入方程后引起的判定系数的变化量和F值的变化量。(6)Partandpartialcorrelation:输出方程中各解释变量与被解释变量之间的简单相关、偏相关系数。(7)Covariancematrix:输出方程中各解释变量间的相关系数、协方差以及各回归系数的方差。(8)CollinearityDiagnostics:多重共线性分析,输出各个解释变量的容忍度、方差膨胀因子、特征值、条件指标、方差比例等。(9)在Residual框中:Durbin-waston表示输出DW检验值;CasewiseDiagnostic表示输出标准化残差绝对值大于等于3(SPSS默认值)的样本数据的相关信息,包括预测值、残差、杠杆值等。2、Options选项,出现的窗口可供用户设置多元线性回归分析中解释变量筛选的标准以及缺失值的处理方式。3、Plot选项,出现的窗口用于对残差序列的分析。(1)窗口左边框中各变量名的含义是:DEPENDNT表示被解释变量,*ZPRED表示标准化预测值,*ZRESID表示标准化残差,*DRESID表示剔除残差,*ADJPRED表示调整的预测值,*SRESID表示学生化残差,*SDRESID表示剔除学生化残差。(2)绘制多对变量的散点图,可根据需要在scatter框中定义散点图的纵坐标和横坐标变量。(3)在StandardizedResidualPlots框中选择Histogram选项绘制标准化残差序列的直方图;选择Normalprobabilityplot绘制标准化残差序列的正态分布累计概率图。选择Produceallpartialplots选项表示依次绘制被解释变量和各个解释变量的散点图。4、Save选项,该窗口将回归分析的某些结果以SPSS变量的形式保存到数据编辑窗口中,并可同时生成XML格式的文件,便于分析结果的网络发布。(1)PredictedValues框中:保存非标准化预测值、标准化预测值、调整的预测值和预测值的均值标准误差。(2)Distance框中:保存均值或个体预测值95%(默认)置信区间的下限值和上限值。(3)Residual框中:保存非标准化残差、标准化残差等。(4)InfluenceStatistics框中:保存剔除第i个样本后统计量的变化量。5、WSL选项,采用加权最小二乘法替代普通最小二乘法估计回归参数,并指定一个变量作为权重变量。以高校科研研究数据为例,建立回归方程研究1、课题总数受论文数的影响2、以课题总数为被解释变量,解释变量为投入人年数(X2)、受投入高级职称的人年数(X3)、投入科研事业费(X4)、专著数(X6)、论文数(X7)、获奖数(X8)。(1)解释变量采用强制进入策略(Enter),并做多重共线性检测。(2)解释变量采用向后筛选策略让SPSS自动完成解释变量的选择。(3)解释变量采用逐步筛选策略让SPSS自动完成解释变量的选择。8.4.5应用举例1、为研究收入和支出的关系,收集1978-2002年我国的年人均可支配收入和年人均消费性支出数据,研究收入与支出之间是否具有较强的线性关

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功