光纤的损耗2.5光纤的损耗即便是在理想的光纤中都存在损耗——本征损耗。光纤的损耗限制了光信号的传播距离。这些损耗主要包括:1.吸收损耗2.散射损耗3.弯曲损耗损耗芯径为9μm,Δ=1.9×10-3,截止波长为1.1μm的单模光纤的损耗谱1.55m附近损耗最低,=0.2dB/kmOH-产生的吸收峰--0.95m,1.24m,1.39m1.3m附近损耗较低,=0.5dB/km损耗与波长有关。在短波长区域,光纤损耗大大增加。吸收损耗原子缺陷吸收:由于光纤材料的原子结构的不完整造成非本征吸收:由过渡金属离子和氢氧根离子(OH-)等杂质对光的吸收而产生的损耗本征吸收:由制造光纤材料本身(如SiO2)的特性所决定,即便波导结构非常完美而且材料不含任何杂质也会存在本征吸收本征吸收(1)紫外吸收:光纤材料的电子吸收入射光能量跃迁到高的能级,同时引起入射光的能量损耗,一般发生在短波长范围z晶格光传播方向kEx(2)红外吸收光波与光纤晶格相互作用,一部分光波能量传递给晶格,使其振动加剧,从而引起的损耗本征吸收曲线非本征吸收光纤制造过程引入的有害杂质带来较强的非本征吸收OH-吸收峰~2dB解决方法:(1)光纤材料化学提纯,比如达到99.9999999%的纯度OH-和过渡金属离子,如铁、钴、镍、铜、锰、铬等(2)制造工艺上改进,如避免使用氢氧焰加热(汽相轴向沉积法)原子缺陷吸收1rad(Si)=0.01J/kg800人死亡光纤晶格很容易在光场的作用下产生振动光纤制造-材料受到热激励-结构不完善强粒子辐射-材料共价键断裂-原子缺陷吸收光能,引起损耗散射损耗光纤的密度和折射率分布不均及结构上的不完善导致散射现象1.瑞利散射2.波导散射瑞利散射波导在小于光波长尺度上的不均匀:-分子密度分布不均匀-掺杂分子导致折射率不均匀导致波导对入射光产生本征散射。瑞利散射一般发生在短波长本征散射和本征吸收一起构成了损耗的理论最小值波导散射分类:米氏散射损耗辐射损耗(弯曲损耗)米氏散射损耗定义:理想的光纤具有完整圆柱对称性,实际上纤芯和包层分界面上存在缺陷,芯径发生漂移,使光纤产生附加损耗。在大于光波长尺度上出现折射率的非均匀性而引起的散射。措施:制造时控制芯径漂移。辐射损耗定义:当理想的圆柱形光纤受到某种外力作用时,会产生一定曲率半径的弯曲,引起能量泄漏到包层中,这种由能量泄漏导致的损耗称为辐射损耗。光纤受力弯曲有两类:宏观弯曲微观弯曲标准单模光纤损耗曲线掺GeO2的低损耗、低OH¯含量石英光纤OH-0.154dB/kmAllWavefiberAllWave:逼近本征损耗单模:本征损耗+OH¯吸收损耗常温且未暴露在强辐射下商用的多模光纤与单模光纤的损耗谱比较多模光纤的损耗大于单模光纤:-多模光纤掺杂浓度高以获得较大的数值孔径(本征散射大)-由于纤芯-包层边界的微扰,多模光纤容易产生高阶模式损耗多模光纤单模光纤弯曲损耗宏弯:曲率半径比光纤的直径大得多的弯曲消逝场cRCladdingCore场分布弯曲曲率半径减小宏弯损耗指数增加微弯:光纤轴线产生微米级的高频弯曲弯曲损耗与模场直径的关系P包层1P包层2Loss模场直径小Loss模场直径大Loss低阶模Loss高阶模模式剥离器:将光纤缠绕成环微弯损耗微弯的原因:光纤的生产过程中的带来的不均成缆时受到压力不均使用过程中由于光纤各个部分热胀冷缩的不同导致的后果:造成能量辐射损耗高阶模功率损耗低阶模功率耦合到高阶模与宏弯的情况相同,模场直径大的模式容易发生宏弯损耗宏弯和微弯对损耗的附加影响宏弯损耗微弯损耗基本损耗NAannaV222/12221增加,V减少,W0越大62/30879.2619.165.022VVaW长波长处附加损耗显著光纤损耗的度量LinoutePP总的来说,光信号在光纤中传播的时候,其功率随距离L的增加呈指数衰减:那么,评价光纤损耗特性可以通过损耗系数来衡量。光纤的损耗系数定义为:其中L为光纤长度,Pin和Pout分别为输入和输出光功率。一般标准单模光纤在1550nm的损耗系数为0.2dB/km。KmdBPPLoutin/log10)(1dzdPP损耗的补偿办法电放大光电光全光放大EDFA拉曼放大器1550nm低光输入掺铒光纤放大器喇曼放大器